什么是数学?

原创 2005年04月30日 22:11:00
  对于大多数人而言,数学很难,不过韩国汉西大学数学教授李成延一定不这么认为,他的两卷本《有趣的数学》(北京理工大学出版社2005年1月出版)以讲故事的方式讲授数学,读来趣味盎然。特别是书中穿插的题为“什么是数学”的段子充满幽默感,也让人有所思考,现摘录数则,以飨读者。   这是波兰著名数学家谢尔品斯基的真实故事。   有一天,他要搬家,他的夫人把行李拿出来以后对他说:“我去叫辆出租车,你在这看好行李,总共有10个箱子。”   过一会儿,他的夫人回来了,他对夫人说道:   “刚才你说有10个箱子,可是我数了只有9个箱子。”   “不对,肯定是10个。”   “说什么呢,我再数一遍,0,1,2,3……” ———·———   有几个人在山谷旅行,由于他们热衷于观赏美景而迷了路,于是他们商讨如何才能找到回去的路。这时,其中一人说:   由于这里是山谷,只要大声喊叫,就会产生回音,喊声一定会传得很远,这样必然会有人听到而来救我们。   听了他的话,大家齐声喊到:救命啊,我们迷路了!   大约过了30多分钟,从远处传来一人声音:   喂,你们肯定是迷路了。   然后就再也没有回音了。这时,有人说:   刚才说话的那个人一定是数学家。   大家问他如何知道那个人是数学家的,他说:   这有三个理由:第一,他听到我们的喊声后想了一会儿才回答;第二,他的回答是正确的;第三,他的回答对我们来说毫无帮助。 ———·———   [问题]2×2等于几?   工程师:根据数学的多种理论来看约为3.99。   物理学家:其解在3.98和4.02之间。   数学家:虽不知道正确的答案,但肯定存在。   哲学家:首先要知道2×2意味着什么。   逻辑学家:为了知道2×2是怎么回事,有必要给2×2下一个严密的定义。   会计师(关好房屋的门窗,仔细地巡查后小心地贴在你的耳边说):需要的答案是多少?我将满足你的要求。 ———·———   有一名古怪的科学家扣押了他的同事,他们分别是工程师、物理学家、数学家,他把这三个人分别关在不同的房间里,并在房间里留下充足的不同种类的罐头,然而没有提供开启罐头的工具。这样关押了1年后。这名古怪的科学家来到了关押三名同事的房子。   首先,他来到了关押工程师的房间,可是工程师已不在房间。工程师利用房间内已有的东西制作了罐头起子,利用罐头盒和食物做成炸弹,逃出了房间。   然后,他去了关押物理学家的房间,看到物理学家用把罐头抛向墙壁的方法打开罐头,正在吃罐头。再仔细观察,发现物理学家正在通过计算把罐头抛向墙壁时最容易打开罐头的角度和速度,研究新的力学。   最后,他去了关押数学家的房间,看到数学家一个罐头都没有打开,已经饿死了。但是数学家已经解决了如何排列罐头能看起来舒服而且便于拿取的问题,还算出了罐头的体积、表面积等等。另外,他在证明下面的理论过程中死去。   定理:如果打不开罐头,我就会死去。   证明:如果我能打开任一罐头…… ———·———   有人问数学家一个问题:   树上有10只鸟,开枪打死一只,还剩几只?   数学家反问:是无声手枪或别的无声的枪吗?   不是。   枪声有多大?   会震得耳朵疼。   那就是说有80~100分贝?   是。   在这个城市里打鸟犯不犯法?   不犯。   您确定那只鸟真的被打死啦?   “确定”。提问的人已经不耐烦了,“拜托,你告诉我还剩几只就行了,OK?”   OK,树上的鸟中有没有聋子?   没有。   有没有关在笼子里的?   没有。   边上还有没有其他的树,树上还有没有其他的鸟?   没有。   有没有残疾或饿得飞不动的鸟?   没有。   算不算还在肚子里和孵在鸟窝里的蛋?   不算。   打鸟的人眼有没有花?保证是10只?   没有花,就10只。   提问的人已经满脑门是汗。   但数学家继续问:   有没有傻得不怕死的?   都怕死。   会不会一枪打死两只?   不会。   所有的鸟都可以自由活动吗?   完全可以。   “如果您的回答没有骗人,”数学家满怀信心地说,“打死的鸟要是挂在树上没有掉下来,那么就剩一只,如果掉下来,就一只不剩。”   提问的人当即晕倒! ———·———   三个旅行者同时到一个宾馆投宿,可是宾馆只剩下一间客房,所以三个人决定住在同一个房间里。宾馆主人说房间费用是一天6万元,三个人各自付了2万元后住进了房间。后来宾馆主人发现房间一天的费用应该是5.5万元,他决定把5000元退还给三个人。可是要把5000元平均分给三个人有困难,所以他自己留下了2000元,把剩下的3000元平均分给每个人1000元。主人在回宾馆大厅的时候怎么计算都少1000元。三个人每人交了2万元后得到了返还的1000元,等于每个人交了1.9万元。那么,19000×3=57000元,再加上自己得的2000元是5.9万元,那么还有1000元上哪儿去了呢?

【ML学习笔记】5:机器学习中的数学基础5

向量/矩阵/张量向量向量可以表示成一维数组,每个分量可以理解为向量所表示的点在空间中坐标的分量。矩阵矩阵可以表示成二维数组,上节理解了矩阵可以理解为线性映射在特定基下的一种定量描述。张量张量可以表示成...

高等数学:第三章 微分中值定理与导数的应用(1)中值定理 罗比达法则 泰勒公式

§3.1  中值定理 一、罗尔定理 若在闭区间上连续,开区间内可导,且,则至少存在一点,使。 在证明罗尔定理之前,我们先来描述一下它的几何意义。 为了使同学们更直观地看到这一点,我们在计算...

正确、全面、简明易懂的AdaBoost算法数学推导

学习Adaboost算法的关键在于理解单层决策树以及背后的数学原理,鉴于网上诸多不完整甚至错误的推导,本文力求做到正确、全面、简明易懂。...
  • zwhut
  • zwhut
  • 2017年11月03日 15:10
  • 27

高等数学:第十一章 无穷级数(2)函数的幂级数展开式、傅里叶级数

§11.5  函数展开成幂级数 一、泰勒级数 如果在处具有任意阶的导数,我们把级数     (1) 称之为函数在处的泰勒级数。 它的前项部分和用记之,且 这里: 由上册中介绍的泰勒中...

数据挖掘-高等数学常用概念用法总结

1,  对数:如果a的x次方等于N(a>0,且a不等于1),那么数x叫做以a为底N的对数(logarithm),记作x=logaN。其中,a叫做对数的底数,N叫做真数默认以e为底数>>> from m...

数学之美系列好文,强烈推荐

转自:http://www.cnblogs.com/KevinYang/archive/2009/02/01/1381783.html 数学之美系列一 -- 统计语言模型 2006年4月3日...

51nod1119 机器人走方格 组合数学

M * N的方格,一个机器人从左上走到右下,只能向右或向下走。有多少种不同的走法?由于方法数量可能很大,只需要输出Mod 10^9 + 7的结果。 题目本身很简单,就是一个初中都推倒过的理论,只能...

南邮离散数学实验2 集合上二元关系性质判定的实现

#include using namespace std; int const MAX = 1000; int matrix[MAX][MAX]; //矩阵 int n; ...

机器学习经典书籍--入门书-入门--深入--数学基础

转之    http://suanfazu.com/t/topic/15 前面有一篇机器学习经典论文/survey合集209。本文总结了机器学习的经典书籍,包括数学基础和算法理论的书...
  • pandav5
  • pandav5
  • 2016年03月29日 10:24
  • 4724

离散数学偏序关系哈斯图上(下)确界极小(大)值最大(小)值

偏序关系 哈斯图画法 最小元  最大元     极小元    极大元 上界     下界     上确界    下确界 看完定义 该看看怎么做了 看个题跋 ...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:什么是数学?
举报原因:
原因补充:

(最多只允许输入30个字)