UVA 796 - Critical Links (求桥,模板题)

原创 2015年07月07日 17:25:32

传送门:
https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=737

题目大意:
给出多个连通的无向图(不止一个),求出各个连通图中的桥,并把所有按顺序输出,求出的桥的两个顶点也需按从小到大。

解题思路:
对每个点进行DFS搜索展开,运用定理low(v)>pre(u)求得各个连通图中的所有桥,放入一集合中并对集合排序并且判断重边即可。
最大的坑:格式,每个样例后要输出一空白行,特别是顶点数n=0的特例特判输出是最容易忘记输出空白行!

Code:

/*   W          w           w        mm          mm             222222222       7777777777777    */
/*    W        w w         w        m  m        m  m          222        22              7777    */
/*    w        w w         w        m  m        m  m                     22              777     */
/*     w      w   w       w        m    m      m    m                    22              77      */
/*     w      w    w      w        m    m      m    m                 222                77      */
/*      w    w      w    w        m      m    m      m              222                  77      */
/*      w    w      w    w        m      m    m      m            222                    77      */
/*       w  w        w  w        m        m  m        m         222                      77      */
/*       w  w        w  w        m        m  m        m      222                         77      */
/*        ww          ww        m          mm          m     222222222222222             77      */

//#pragma comment(linker, "/STACK:102400000,102400000")
//C++
//int size = 256 << 20; // 256MB
//char *p = (char*)malloc(size) + size;
//__asm__("movl %0, %%esp\n" :: "r"(p));
//G++
#include<set>
#include<map>
#include<queue>
#include<stack>
#include<ctime>
#include<deque>
#include<cmath>
#include<vector>
#include<string>
#include<cctype>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<sstream>
#include<iostream>
#include<algorithm>
#define REP(i,s,t) for(int i=(s);i<=(t);i++)
#define REP2(i,t,s) for(int i=(t);i>=s;i--)

using namespace std;

typedef long long ll;
typedef unsigned long long ull;
typedef unsigned long ul;

const int N=100005;
int n;
struct CountBridge
{
    vector<int>G[N];
    int low[N],pre[N];
    bool iscut[N];
    int dfs_clock;
    vector<pair<int,int> >bri;
    void init()
    {
        REP(i,0,n-1)
        {
            G[i].clear();
        }
        bri.clear();
        memset(pre,0,sizeof(pre));
        memset(iscut,false,sizeof(iscut));
        dfs_clock=0;
    }
    void addedge(int u,int v)
    {
        G[u].push_back(v);
        G[v].push_back(u);
    }
    int dfs(int u,int fa)
    {
        int lowu=pre[u]=++dfs_clock;
        int child=0;
        for(int i=0; i<G[u].size(); i++)
        {
            int v=G[u][i];
            if(!pre[v])
            {
                child++;
                int lowv=dfs(v,u);
                lowu=min(lowu,lowv);
                if(lowv>=pre[u])
                {
                    iscut[u]=true;
                    if(lowv>pre[u])
                    {
                        if(u<v)
                        {
                            bri.push_back(make_pair(u,v));
                        }
                        else
                        {
                            bri.push_back(make_pair(v,u));
                        }
                    }
                }
            }
            else if(pre[v]<pre[u]&&v!=fa)
            {
                lowu=min(lowu,pre[v]);
            }
        }
        if(fa<0&&child==1)
        {
            iscut[u]=0;
        }
        low[u]=lowu;
        return lowu;
    }
    int solve()
    {
        REP(i,0,n-1)
        {
            if(!pre[i])
            {
                dfs(i,-1);
            }
        }
        printf("%d critical links\n",bri.size());
        sort(bri.begin(),bri.end());
        vector<pair<int,int> >::iterator yy,it;
        yy=unique(bri.begin(),bri.end());
        //for(int i=0; i<bri.size(); i++)
        {
            //printf("%d - %d\n",bri[i].first,bri[i].second);
        }
        for(it=bri.begin();it!=bri.end();it++)
        {
            printf("%d - %d\n",(*it).first,(*it).second);
        }
        printf("\n");
    }
    void debug()
    {
        REP(i,0,n-1)
        {
            if(G[i].size()==0)
            {
                continue;
            }
            printf("%d ",i);
            for(int j=0; j<G[i].size(); j++)
            {
                printf(" %d",G[i][j]);
            }
            printf("\n");
        }
        REP(i,0,n-1)
        {
            printf("low[%d]=%d\n",i,low[i]);
        }
        printf("dfs_clock=%d\n",dfs_clock);
    }
} solver;
int main()
{
#ifdef ONLINE_JUDGE
#else
    freopen("test.in","r",stdin);
#endif
    while(~scanf("%d",&n))
    {
        if(n==0)
        {
            printf("0 critical links\n\n");
            continue;
        }
        solver.init();
        int u;
        REP(i,1,n)
        {
            int x;
            scanf("%d (%d)",&u,&x);
            REP(j,1,x)
            {
                int v;
                scanf("%d",&v);
                solver.addedge(u,v);
            }
        }
        solver.solve();
        //solver.debug();
    }
    return 0;
}
版权声明:本文为博主原创文章,未经博主允许不得转载。 举报

相关文章推荐

UVA796Critical Links(求桥)(tarjan模板题)

题目链接:UVA796Critical Links 给你一个无向图,让你把桥边输出 1.这图不一定连通。 2.边按字典序输出#include #include #include #include...

UVA 796 Critical Links(求桥)

求 无向图的割点和桥 可以找出割点和桥,求删掉每个点后增加的连通块。 需要注意重边的处理,可以先用矩阵存,再转邻接表,或者进行判重#include #include #include #inclu...

我是如何成为一名python大咖的?

人生苦短,都说必须python,那么我分享下我是如何从小白成为Python资深开发者的吧。2014年我大学刚毕业..

UVA315 && UVA 796 (求割点和桥,模版)

两题的共同之处 输入都很麻烦但是也难不倒我QAQ 另外 第二题 有个trick点,要排序后输出 UVA 315 /* **********************************...

LightOJ 1026 - Critical Links (tarjan 找桥)

题意:找出所有的桥,并输出。 水题,中午肚子痛,查不出错了,晚上一看,tarjan写错了!!!! #include #include #include #include #incl...

tju 3219& hdu2295(Dancing Links重复覆盖模板题)

3219.   Radar Time Limit: 1.0 Seconds   Memory Limit: 65536K Total Runs: 553   Accepted Runs:...

HUST 1017 Exact cover (Dancing Links 模板题)

题目大意: 就是N*M的01矩阵, 初始有C(C 大致思路: 跳舞链解决的矩阵精确覆盖问题, 模板题 模板来自kuangbin大爷Orz 代码如下: Result  : ...

hust 1017(Dancing Links模板题)

Exact cover Special Judge Time Limit: 15 Sec  Memory Limit: 128 MB Submissions: 3837  Solved: 208...
  • fp_hzq
  • fp_hzq
  • 2011-09-20 09:35
  • 1530

Light 1026 - Critical Links (边-双连通分量 + 缩点)

RT

[ACM] HUST 1017 Exact cover (Dancing Links,DLX模板题)

DESCRIPTIONThere is an N*M matrix with only 0s and 1s, (1 INPUTThere are multiply test cases. First ...

HUST 1017 Exact cover (精确覆盖|Dancing Links模板题)

题意:精确覆盖问题。 思路:测试模板。 #include #include #include #include #include #include #include #include #inclu...
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)