关闭

Light OJ 1300 - Odd Personality (Tarjian求边双连通+二分图染色法判定奇圈)

319人阅读 评论(0) 收藏 举报
分类:

传送门:http://lightoj.com/volume_showproblem.php?problem=1300
http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=27010

题目大意:给定无向图,求有多少个点可以使得从改点出发,不走重复边回到起点并且经过的点的个数为n且n为奇数。

解题思路:从某个点开始,不走重复边回到起点,等价于一个连通子图是一个简单环(无重复路径),且所有边都不是桥,就是原图的一个边双连通分量。通过Tarjian求出全部的边双连通分量后,对每个双连通分量进行染色法是否存在奇圈,染色失败则说明存在奇圈,答案里就应该包含该双连通分量里的点数,染色法与二分图判断的染色方法类似,注意属于同一个双连通块里就可以了,每个双连通分量里的点数可通过统计计数把每个双连通分量里的顶点数求出,累加进答案即可。

Code:

/*   W          w           w        mm          mm             222222222       7777777777777    */
/*    W        w w         w        m  m        m  m          222        22              7777    */
/*    w        w w         w        m  m        m  m                     22              777     */
/*     w      w   w       w        m    m      m    m                    22              77      */
/*     w      w    w      w        m    m      m    m                 222                77      */
/*      w    w      w    w        m      m    m      m              222                  77      */
/*      w    w      w    w        m      m    m      m            222                    77      */
/*       w  w        w  w        m        m  m        m         222                      77      */
/*       w  w        w  w        m        m  m        m      222                         77      */
/*        ww          ww        m          mm          m     222222222222222             77      */

//#pragma comment(linker, "/STACK:102400000,102400000")
//C++
//int size = 256 << 20; // 256MB
//char *p = (char*)malloc(size) + size;
//__asm__("movl %0, %%esp\n" :: "r"(p));
//G++
#include<set>
#include<map>
#include<queue>
#include<stack>
#include<ctime>
#include<deque>
#include<cmath>
#include<vector>
#include<string>
#include<cctype>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<sstream>
#include<iostream>
#include<algorithm>
#define REP(i,s,t) for(int i=(s);i<=(t);i++)
#define REP2(i,t,s) for(int i=(t);i>=s;i--)

using namespace std;

typedef long long ll;
typedef unsigned long long ull;
typedef unsigned long ul;

const int MAXN=10005;
const int MAXM=40005;
int T;
int n,m;
struct BCC
{
    struct Edge
    {
        int to,next;
        bool cut;//是否是桥标记
    } edge[MAXM];
    int head[MAXN],tot;
    int Low[MAXN],DFN[MAXN],Stack[MAXN],Belong[MAXN];//Belong数组的值是1~block
    int Index,top;
    int degree[MAXN];
    int block;//边双连通块数
    bool Instack[MAXN];
    int bridge;//桥的数目
    void init()
    {
        Index=block=tot=0;
        memset(DFN,0,sizeof(DFN));
        memset(Instack,0,sizeof(Instack));
        memset(head,-1,sizeof(head));
        memset(degree,0,sizeof(degree));
    }
    void addedge(int u,int v)
    {
        edge[tot].to = v;
        edge[tot].next = head[u];
        edge[tot].cut=false;
        head[u] = tot++;
    }
    void Tarjan(int u,int pre)
    {
        int v;
        Low[u] = DFN[u] = ++Index;
        Stack[top++] = u;
        Instack[u] = true;
        for(int i = head[u]; i != -1; i = edge[i].next)
        {
            v = edge[i].to;
            if(v == pre)continue;
            if( !DFN[v] )
            {
                Tarjan(v,u);
                if( Low[u] > Low[v] )Low[u] = Low[v];
                if(Low[v] > DFN[u])
                {
                    bridge++;
                    edge[i].cut = true;
                    edge[i^1].cut = true;
                }
            }
            else if( Instack[v] && Low[u] > DFN[v] )
                Low[u] = DFN[v];
        }
        if(Low[u] == DFN[u])
        {
            block++;
            do
            {
                v = Stack[--top];
                Instack[v] = false;
                Belong[v] = block;
            }
            while( v!=u );
        }
    }
    int find_bcc()
    {
        for(int i=0; i<n; i++)
        {
            if(!DFN[i])
            {
                Tarjan(i,-1);
            }
        }
    }
    int color[MAXN];
    bool bipartite(int u,int b)
    {
        for(int i=head[u];i!=-1;i=edge[i].next)
        {
            int v=edge[i].to;
            if(Belong[v]!=b)
            {
                continue;
            }
            if(color[v]==color[u])
            {
                return false;
            }
            if(!color[v])
            {
                color[v]=3-color[u];
                if(!bipartite(v,b))
                {
                    return false;
                }
            }
        }
        return true;
    }
    int solve()
    {
        memset(color,0,sizeof(color));
        memset(degree,0,sizeof(degree));
        bool vis[MAXN];
        memset(vis,0,sizeof(vis));
        for(int i=0;i<n;i++)
        {
            degree[Belong[i]]++;
        }
        int ans=0;
        for(int i=0;i<n;i++)
        {
            if(degree[Belong[i]]>=3)
            {
                if(!vis[Belong[i]])
                {
                    color[i]=1;
                    vis[Belong[i]]=1;
                    bool flag=bipartite(i,Belong[i]);
//                    printf("block=%d flag=%d\n",Belong[i],flag);
//                    for(int j=0;j<n;j++)
//                    {
//                        if(Belong[j]==Belong[i])
//                        {
//                            printf("color[%d]=%d\n",j,color[j]);
//                        }
//                    }
                    if(!flag)
                    {
                        ans+=degree[Belong[i]];
                    }
                }
            }
        }
        return ans;
    }
    void debug()
    {
        for(int i=0; i<n; i++)
        {
            printf("Belong[%d]=%d\n",i,Belong[i]);
        }
    }
} solver;
int main()
{
#ifdef ONLINE_JUDGE
#else
    freopen("test.in","r",stdin);
#endif
    int ca=1;
    scanf("%d",&T);
    while(T--)
    {
        scanf("%d%d",&n,&m);
        solver.init();
        REP(i,1,m)
        {
            int u,v;
            scanf("%d%d",&u,&v);
            solver.addedge(u,v);
            solver.addedge(v,u);
        }
        solver.find_bcc();
        printf("Case %d: %d\n",ca++,solver.solve());
        //solver.debug();
    }
    return 0;
}
0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:18484次
    • 积分:625
    • 等级:
    • 排名:千里之外
    • 原创:41篇
    • 转载:0篇
    • 译文:0篇
    • 评论:5条
    最新评论