Light OJ 1291 - Real Life Traffic (构造双连通图)

原创 2015年07月09日 20:14:19

传送门:http://lightoj.com/volume_showproblem.php?problem=1291
http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=27001

题目大意:给定无向图,求最少添加多少条边使各个点至少在一个简单环中。

解题思路:添边构造双连通图,通过Tarjian求出各个双连通分支后缩点,统计出树中度为1的节点的个数,即为叶节点的个数,记为leaf。则至少在树上添加(leaf+1)/2条边,就能使树达到边二连通,所以至少添加的边数就是(leaf+1)/2。具体方法为,首先把两个最近公共祖先最远的两个叶节点之间连接一条边,这样可以把这两个点到祖先的路径上所有点收缩到一起,因为一个形成的环一定是双连通的。然后再找两个最近公共祖先最远的两个叶节点,这样一对一对找完,恰好是(leaf+1)/2次,把所有点收缩到了一起。(证明来自于下面Byvoid的博客链接)

参考:https://www.byvoid.com/blog/biconnect/

Code:

/*   W          w           w        mm          mm             222222222       7777777777777    */
/*    W        w w         w        m  m        m  m          222        22              7777    */
/*    w        w w         w        m  m        m  m                     22              777     */
/*     w      w   w       w        m    m      m    m                    22              77      */
/*     w      w    w      w        m    m      m    m                 222                77      */
/*      w    w      w    w        m      m    m      m              222                  77      */
/*      w    w      w    w        m      m    m      m            222                    77      */
/*       w  w        w  w        m        m  m        m         222                      77      */
/*       w  w        w  w        m        m  m        m      222                         77      */
/*        ww          ww        m          mm          m     222222222222222             77      */

//#pragma comment(linker, "/STACK:102400000,102400000")
//C++
//int size = 256 << 20; // 256MB
//char *p = (char*)malloc(size) + size;
//__asm__("movl %0, %%esp\n" :: "r"(p));
//G++
#include<set>
#include<map>
#include<queue>
#include<stack>
#include<ctime>
#include<deque>
#include<cmath>
#include<vector>
#include<string>
#include<cctype>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<sstream>
#include<iostream>
#include<algorithm>
#define REP(i,s,t) for(int i=(s);i<=(t);i++)
#define REP2(i,t,s) for(int i=(t);i>=s;i--)

using namespace std;

typedef long long ll;
typedef unsigned long long ull;
typedef unsigned long ul;

const int MAXN=10005;
const int MAXM=40005;
int T;
int n,m;
struct BCC
{
    struct Edge
    {
        int to,next;
        bool cut;//是否是桥标记
    } edge[MAXM];
    int head[MAXN],tot;
    int Low[MAXN],DFN[MAXN],Stack[MAXN],Belong[MAXN];//Belong数组的值是1~block
    int Index,top;
    int degree[MAXN];
    int block;//边双连通块数
    bool Instack[MAXN];
    int bridge;//桥的数目
    void init()
    {
        Index=block=tot=0;
        memset(DFN,0,sizeof(DFN));
        memset(Instack,0,sizeof(Instack));
        memset(head,-1,sizeof(head));
        memset(degree,0,sizeof(degree));
    }
    void addedge(int u,int v)
    {
        edge[tot].to = v;
        edge[tot].next = head[u];
        edge[tot].cut=false;
        head[u] = tot++;
    }
    void Tarjan(int u,int pre)
    {
        int v;
        Low[u] = DFN[u] = ++Index;
        Stack[top++] = u;
        Instack[u] = true;
        for(int i = head[u]; i != -1; i = edge[i].next)
        {
            v = edge[i].to;
            if(v == pre)continue;
            if( !DFN[v] )
            {
                Tarjan(v,u);
                if( Low[u] > Low[v] )Low[u] = Low[v];
                if(Low[v] > DFN[u])
                {
                    bridge++;
                    edge[i].cut = true;
                    edge[i^1].cut = true;
                }
            }
            else if( Instack[v] && Low[u] > DFN[v] )
                Low[u] = DFN[v];
        }
        if(Low[u] == DFN[u])
        {
            block++;
            do
            {
                v = Stack[--top];
                Instack[v] = false;
                Belong[v] = block;
            }
            while( v!=u );
        }
    }
    int find_bcc()
    {
        for(int i=0; i<n; i++)
        {
            if(!DFN[i])
            {
                Tarjan(i,-1);
            }
        }
    }
    int solve()
    {
        memset(degree,0,sizeof(degree));
        for(int i=0;i<n;i++)
        {
            for(int j=head[i];j!=-1;j=edge[j].next)
            {
                int v=edge[j].to;
                if(Belong[i]!=Belong[v])
                {
                    degree[Belong[i]]++;
                }
            }
        }
        int ans=0;
        for(int i=1;i<=n;i++)
        {
            if(degree[i]==1)
            {
                ans++;
            }
        }
        return (ans+1)/2;
    }
    void debug()
    {
        for(int i=0; i<n; i++)
        {
            printf("Belong[%d]=%d\n",i,Belong[i]);
        }
        for(int i=1;i<=n;i++)
        {
            printf("degree[%d]=%d\n",i,degree[i]);
        }
    }
} solver;
int main()
{
#ifdef ONLINE_JUDGE
#else
    freopen("test.in","r",stdin);
#endif
    int ca=1;
    scanf("%d",&T);
    while(T--)
    {
        scanf("%d%d",&n,&m);
        solver.init();
        REP(i,1,m)
        {
            int u,v;
            scanf("%d%d",&u,&v);
            solver.addedge(u,v);
            solver.addedge(v,u);
        }
        solver.find_bcc();
        printf("Case %d: %d\n",ca++,solver.solve());
        //solver.debug();
    }
    return 0;
}
版权声明:本文为博主原创文章,未经博主允许不得转载。 举报

相关文章推荐

LightOJ - 1291 Real Life Traffic (tarjan算法求强连通分量)

该题意为问你最小让加几条边使得删除任何一条边所有的顶点任然连通。 如果是不含环的图,使得所有的顶点度大于或等于2删除任何一条边其他的顶点任然连通,那么该题即转化为求连通分量的问题, 求出连通分量之...

Light oj 1074 - Extended Traffic

1074 - Extended Traffic     PDF (English) Statistics Forum Time Limit: ...

我是如何成为一名python大咖的?

人生苦短,都说必须python,那么我分享下我是如何从小白成为Python资深开发者的吧。2014年我大学刚毕业..

【HDU】3686 Traffic Real Time Query System 点双连通+LCA

传送门:【HDU】3686 Traffic Real Time Query System

poj 1438 One-way Traffic(双连通分量)

题意:给出一个n个顶点的图,图中的边有些是有向的,有些是无向的,已知在图中从任意一个顶点出发能到达任意一个顶点,现在要尽量把无向边改成有向边,并且还保证前面的性质。给出任意一组方案。 思路:...

How to think like a Computer Scientist: 课后习题第九章 第3题

#------------------------------------------------------------------------------- # Name: modu...

How to think like a Computer Scientist: 课后习题第九章 第2题

#------------------------------------------------------------------------------- # Name: modu...

poj1438One-way Traffic【双连通分量:混合图->有向图】

跟poj1515有点像 不过不是改动一点就能成的,这个题遇到单向边是不改动的,只是把以下几种情况中的边输出: 1) 第一次深搜时把所有有向边都当成无向边,这时候求出的桥必须双向都输出(当然了,一种给...

How to think like a Computer Scientist: 课后习题第九章 第5题

#------------------------------------------------------------------------------- # Name: modu...

How to think like a Computer Scientist: 课后习题第九章 第4题

#------------------------------------------------------------------------------- # Name: modu...

poj 3177 Redundant Paths(构造边双连通)

Redundant Paths Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7598  ...
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)