Light OJ 1291 - Real Life Traffic (构造双连通图)

原创 2015年07月09日 20:14:19

传送门:http://lightoj.com/volume_showproblem.php?problem=1291
http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=27001

题目大意:给定无向图,求最少添加多少条边使各个点至少在一个简单环中。

解题思路:添边构造双连通图,通过Tarjian求出各个双连通分支后缩点,统计出树中度为1的节点的个数,即为叶节点的个数,记为leaf。则至少在树上添加(leaf+1)/2条边,就能使树达到边二连通,所以至少添加的边数就是(leaf+1)/2。具体方法为,首先把两个最近公共祖先最远的两个叶节点之间连接一条边,这样可以把这两个点到祖先的路径上所有点收缩到一起,因为一个形成的环一定是双连通的。然后再找两个最近公共祖先最远的两个叶节点,这样一对一对找完,恰好是(leaf+1)/2次,把所有点收缩到了一起。(证明来自于下面Byvoid的博客链接)

参考:https://www.byvoid.com/blog/biconnect/

Code:

/*   W          w           w        mm          mm             222222222       7777777777777    */
/*    W        w w         w        m  m        m  m          222        22              7777    */
/*    w        w w         w        m  m        m  m                     22              777     */
/*     w      w   w       w        m    m      m    m                    22              77      */
/*     w      w    w      w        m    m      m    m                 222                77      */
/*      w    w      w    w        m      m    m      m              222                  77      */
/*      w    w      w    w        m      m    m      m            222                    77      */
/*       w  w        w  w        m        m  m        m         222                      77      */
/*       w  w        w  w        m        m  m        m      222                         77      */
/*        ww          ww        m          mm          m     222222222222222             77      */

//#pragma comment(linker, "/STACK:102400000,102400000")
//C++
//int size = 256 << 20; // 256MB
//char *p = (char*)malloc(size) + size;
//__asm__("movl %0, %%esp\n" :: "r"(p));
//G++
#include<set>
#include<map>
#include<queue>
#include<stack>
#include<ctime>
#include<deque>
#include<cmath>
#include<vector>
#include<string>
#include<cctype>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<sstream>
#include<iostream>
#include<algorithm>
#define REP(i,s,t) for(int i=(s);i<=(t);i++)
#define REP2(i,t,s) for(int i=(t);i>=s;i--)

using namespace std;

typedef long long ll;
typedef unsigned long long ull;
typedef unsigned long ul;

const int MAXN=10005;
const int MAXM=40005;
int T;
int n,m;
struct BCC
{
    struct Edge
    {
        int to,next;
        bool cut;//是否是桥标记
    } edge[MAXM];
    int head[MAXN],tot;
    int Low[MAXN],DFN[MAXN],Stack[MAXN],Belong[MAXN];//Belong数组的值是1~block
    int Index,top;
    int degree[MAXN];
    int block;//边双连通块数
    bool Instack[MAXN];
    int bridge;//桥的数目
    void init()
    {
        Index=block=tot=0;
        memset(DFN,0,sizeof(DFN));
        memset(Instack,0,sizeof(Instack));
        memset(head,-1,sizeof(head));
        memset(degree,0,sizeof(degree));
    }
    void addedge(int u,int v)
    {
        edge[tot].to = v;
        edge[tot].next = head[u];
        edge[tot].cut=false;
        head[u] = tot++;
    }
    void Tarjan(int u,int pre)
    {
        int v;
        Low[u] = DFN[u] = ++Index;
        Stack[top++] = u;
        Instack[u] = true;
        for(int i = head[u]; i != -1; i = edge[i].next)
        {
            v = edge[i].to;
            if(v == pre)continue;
            if( !DFN[v] )
            {
                Tarjan(v,u);
                if( Low[u] > Low[v] )Low[u] = Low[v];
                if(Low[v] > DFN[u])
                {
                    bridge++;
                    edge[i].cut = true;
                    edge[i^1].cut = true;
                }
            }
            else if( Instack[v] && Low[u] > DFN[v] )
                Low[u] = DFN[v];
        }
        if(Low[u] == DFN[u])
        {
            block++;
            do
            {
                v = Stack[--top];
                Instack[v] = false;
                Belong[v] = block;
            }
            while( v!=u );
        }
    }
    int find_bcc()
    {
        for(int i=0; i<n; i++)
        {
            if(!DFN[i])
            {
                Tarjan(i,-1);
            }
        }
    }
    int solve()
    {
        memset(degree,0,sizeof(degree));
        for(int i=0;i<n;i++)
        {
            for(int j=head[i];j!=-1;j=edge[j].next)
            {
                int v=edge[j].to;
                if(Belong[i]!=Belong[v])
                {
                    degree[Belong[i]]++;
                }
            }
        }
        int ans=0;
        for(int i=1;i<=n;i++)
        {
            if(degree[i]==1)
            {
                ans++;
            }
        }
        return (ans+1)/2;
    }
    void debug()
    {
        for(int i=0; i<n; i++)
        {
            printf("Belong[%d]=%d\n",i,Belong[i]);
        }
        for(int i=1;i<=n;i++)
        {
            printf("degree[%d]=%d\n",i,degree[i]);
        }
    }
} solver;
int main()
{
#ifdef ONLINE_JUDGE
#else
    freopen("test.in","r",stdin);
#endif
    int ca=1;
    scanf("%d",&T);
    while(T--)
    {
        scanf("%d%d",&n,&m);
        solver.init();
        REP(i,1,m)
        {
            int u,v;
            scanf("%d%d",&u,&v);
            solver.addedge(u,v);
            solver.addedge(v,u);
        }
        solver.find_bcc();
        printf("Case %d: %d\n",ca++,solver.solve());
        //solver.debug();
    }
    return 0;
}

相关文章推荐

LightOJ - 1291 Real Life Traffic (tarjan算法求强连通分量)

该题意为问你最小让加几条边使得删除任何一条边所有的顶点任然连通。 如果是不含环的图,使得所有的顶点度大于或等于2删除任何一条边其他的顶点任然连通,那么该题即转化为求连通分量的问题, 求出连通分量之...

LightOJ 1210 - Efficient Traffic System【强连通图】

题目链接:http://www.lightoj.com/volume_showproblem.php?problem=1210题意: 加多少条边,使得整个图变得强连通。 使用Tarjan进行缩点...

【HDU】3686 Traffic Real Time Query System 点双连通+LCA

传送门:【HDU】3686 Traffic Real Time Query System

构造边双连通图(求桥) poj 3352

连通性问题

Light oj 1074 - Extended Traffic

1074 - Extended Traffic     PDF (English) Statistics Forum Time Limit: ...

Light oj 1074 - Extended Traffic SPFA+负权环判断

一道难度很一般的题。。 但是数组开小了,我的天,还是对SPFA理解不够深。! 一开始就RE但是我没注意到是数组开小的问题,哎,又花了好长时间细节上。 加油吧!...

哈理工OJ 1351 欧拉路径(判断连通图+欧拉回路或者欧拉路径)

欧拉路径 Time Limit: 1000 MS Memory Limit: 32767 K Total Submit: 226(68 users) Total Accepted: 82(60 u...

<九度 OJ>题目1545:奇怪的连通图

题目描述: 已知一个无向带权图,求最小整数k。使仅使用权值小于等于k的边,节点1可以与节点n连通。 输入: 输入包含多组测试用例,每组测试用例的开头为一个整数n(1 接下去m行,描述图上...

九度OJ-1109:连通图

本题与“1012-畅通工程”完全相同,就是求连通分量个数。不赘述。 题目描述:     给定一个无向图和其中的所有边,判断这个图是否所有顶点都是连通的。 输入:  ...

九度OJ 1109 连通图

题目描述:     给定一个无向图和其中的所有边,判断这个图是否所有顶点都是连通的。 输入:     每组数据的第一行是两个整数 n 和 m(0 输出:   ...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:Light OJ 1291 - Real Life Traffic (构造双连通图)
举报原因:
原因补充:

(最多只允许输入30个字)