关闭

hdu(1542)——Atlantis(线段树求面积并)

标签: 线段树求面积并
347人阅读 评论(0) 收藏 举报
分类:

终于做到线段树求矩形面积并的题目了。虽说很早以前看过思路,但是这回还是靠着别人的代码来写的。另外还有一个小问题,如果能有解决者,将十分感谢。

问题:

不知道为什么这里建树是这样的。

void build(int l,int r,int v){
	tree[v].l=y[l];
	tree[v].r=y[r];
	tree[v].len=tree[v].cover=0;
	if(l+1==r) return ;
	int mid=(l+r)>>1;
	int temp=v<<1;
	build(l,mid,temp);
	build(mid,r,temp+1);
}

就是为什么这里第二个build的时候不是build(mid+1,r,temp+1)呢?

我发现这两种建树的方法建出来的是不一样的。第一种建树建出来的树区间是连续的,所以在后面的查询与更新的时候会比较方便。

后来找到了答案,它说这里不是mid+1的原因是要所有段全部覆盖。

首先是思路,啊,网上翻了很多题解,但是发现大多数都是相类似的。不知道他们是不是都是抄的。

我把一篇写的比较好的思路贴出来供大家分享:http://www.tuicool.com/articles/6Zf6J3 (不得不说这个人写的真心十分好啊。。。

然后总结一下我自己练了后的思路:

首先我们要确定要以哪个方向来建树,这里我是以x轴方向来建树的。

所以我们把每一个x位置所对应的y左边全部都保存起来,然后这样可以方便我们去线段树中寻找。

然后我们要对其按照x的大小进行排序。

同时把每个y坐标也要保存起来,因为我们线段树的作用是为了快速查询矩形的高的。(因为宽的话,不就是前面的那个x减去后面的那个x吗。。。

y坐标也要进行排序,这样也是为了我们建树的需要。

在这里我们每次查询后的高度是保存在线段树的第一个节点中。

如果大家觉得我的代码看不懂的话,推荐看一下这个人写的代码:http://www.faceye.net/search/69289.html

#include<stdio.h>
#include<string.h>
#include<iostream>
#include<algorithm>
#include<map>
using namespace std;
#define maxn 1111
struct node{
	double l,r,len;
	int cover;
}tree[maxn*4];
struct nn{
	double x,y1,y2;
	int flag;
}t[maxn];
double x1,y1,x2,y2;
double y[maxn];
bool cmp(nn a,nn b){
	return a.x<b.x;
}
void push(int v){
	int temp=v<<1;
	if(tree[v].cover>0){
		tree[v].len=tree[v].r-tree[v].l;
	}
	else{
		tree[v].len=tree[temp].len+tree[temp+1].len;
	}
}
void build(int l,int r,int v){
	tree[v].l=y[l];
	tree[v].r=y[r];
	tree[v].len=tree[v].cover=0;
	if(l+1==r) return ;
	int mid=(l+r)>>1;
	int temp=v<<1;
	build(l,mid,temp);
	build(mid,r,temp+1);
}
void update(int v,struct nn b){
	if(tree[v].l==b.y1&&tree[v].r==b.y2){
		tree[v].cover+=b.flag;
		push(v);
		return ;
	}
	int temp=v<<1;
	if(b.y1>=tree[temp].r)  update(temp+1,b);
	else if(b.y2<=tree[temp+1].l) update(temp,b);
	else{
		struct nn y;
		y=b;
		y.y2=tree[temp].r;
		update(temp,y);
		y=b;
		y.y1=tree[temp+1].l;
		update(temp+1,y);
	} 
	push(v);
}
int main(){
	int n,k=1;
	while(~scanf("%d",&n)){
		int j=1;
		if(n==0) break;
		for(int i=1;i<=n;i++){
			scanf("%lf%lf%lf%lf",&x1,&y1,&x2,&y2);
			t[j].x=x1;
			t[j].y1=y1;
			t[j].y2=y2;
			t[j].flag=1;
			y[j]=y1;
			j++;
			t[j].x=x2;
			t[j].y1=y1;
			t[j].y2=y2;
			t[j].flag=-1;
			y[j]=y2;
			j++;
		}
		sort(y+1,y+j);
		sort(t+1,t+j,cmp);
		build(1,j-1,1);
		update(1,t[1]);
		double sum=0;
		for(int i=2;i<j;i++){			//注意这里是到j位置,因为我们这里是对边进行枚举,所以j-1代表的意思是总共有几条边 
			sum+=(t[i].x-t[i-1].x)*tree[1].len;
			update(1,t[i]);
		}
		printf("Test case #%d\n",k++);
		printf("Total explored area: %.2lf\n\n",sum);
	}
}

最后还有一个输出格式的问题,要小心。

PS:因为我自己是看这代码找的思路然后写的,所以对思路的解释可能没那么清楚详细,但是看看代码比较直观,所以我认为也是比较好找思路的。

希望能够帮到更多在学习线段树的人。加油!!



0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:96714次
    • 积分:3081
    • 等级:
    • 排名:第11608名
    • 原创:215篇
    • 转载:2篇
    • 译文:0篇
    • 评论:20条
    最新评论