莫比乌斯入门--HYSBZ - 2818

   给定一个整数n,求1<=x,y<=N且Gcd(x,y)为素数的

数对(x,y)有多少对.

  首先我们可以设 f(d) d=gcd(x,y) 满足的对数。

  设 F(d) d|gcd(x,y) 满足的对数。

可知,x,y,都要能被d整除,所以有: F(d)=ndnd

根据莫比乌斯反演公式可知: f(x)=x|dμ(dx)F(d)

由于 Gcd(x,y)为素数,所以: ans=pp|dμ(dp)F(d)

所以: ans=dndndp|dμ(dp)

所以我们需要预处理 p|dμ(dp) ,设 sum(d)=p|dμ(dp)

由于 对任意正整数

  

                           

μ(d

所以

p|d p能整除d时: sum(dp)=μ(d)
p 不能整除 d 时: sum(dp)=μ(d)sum(d)

代码如下:

#include <iostream>
#include <string.h>
#include <stdio.h>
#include <bitset>
#define siz 10000005

using namespace std;
typedef long long LL;
int prime[siz],mu[siz],sum[siz];
bool check[siz];
int n;
void Mobius(){
    mu[1] = 1;
    prime[0] = 0;
    for(int i=2;i<siz;i++){
        if(!check[i]){
            mu[i] = -1;
            sum[i] = 1;
            prime[++prime[0]] = i;
        }
        for(int j=1;j<=prime[0];j++){
            if(i*prime[j] >= siz) break;
            check[i*prime[j]] = true;
            if(i%prime[j]){
                mu[i*prime[j]] = -mu[i];
                sum[i*prime[j]] = mu[i] - sum[i];
            }
            else{
                mu[i*prime[j]] = 0;
                sum[i*prime[j]] = mu[i];
                break;
            }
        }
    }
}
void Solve(int n)
{
    LL ans = 0;
    for(int i=1;i<=n;i++){
        ans += 1LL*(n/i)*(n/i)*sum[i];
    }
    printf("%lld\n",ans);
}

int main()
{
    Mobius();
    scanf("%d",&n);
    Solve(n);
    return 0;
}


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值