【第22期】观点:IT 行业加班,到底有没有价值?

poj3696.The Luckiest number (阶 && 欧拉函数 && 欧几里德)

原创 2015年11月17日 20:43:13
给定一个正整数 L ,问至少多少个 8 连在一起组成的正整数可以是 L 的倍数

N 个 8 组成的自然数是 (10 ^ N - 1) / 9 * 8。原题即为求最小的 N 满足 (10 ^ N - 1) / 9 * 8 = k * L。设 t = gcd(L, 8)。上式即为 8(10 ^ N - 1 ) /  t = 9kL。显然 8/t, 9L/t 都是整数,且 gcd(8/t, 9L/t)=1。所以 (9L/t) | (10 ^ N - 1)。也就是 10^N = 1(mod 9L/t)。也就是 10 关于 9L/t 的阶。于是 Nφ(9L/t)的约数。检查所有约数即可。

#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>

using namespace std;

const int MAX_N = 50000;

typedef long long LL;

LL n, d[MAX_N << 1], cnt = 0;
LL a;

int gcd(int x, int y)
{
	if(!y) return x;
	return gcd(y, x % y);
}

LL mult(LL a, LL b, LL p)
{
    LL ret = 0;
    while (b)
    {
        if (b & 1)
            ret = (ret + a) % p;
        a = 2 * a % p;
        b >>= 1;
    }
    return ret;
}

LL power(LL x, LL n, LL p)
{
    LL ret = 1;
    x %= p;
    while (n)
    {
        if (n & 1)
            ret = mult(ret, x, p);
        x = mult(x, x, p);
        n >>= 1;
    }
    return ret;
}

void doit()
{
	int g = gcd(8, n);
	a = (LL)(9 * (n / g)); 
	LL f = 1, t = a;   
    for(LL i = 2; i * i<= a; i ++){
        if (t % i == 0){        
            f *= (i-1); t /= i;
            while(t%i ==0){
                f *= i;    
                t /= i;
            }
        }
        if (t == 1) break;    
    }
    if (t > 1) f *= (t-1); //计算phi
	 
	for (LL i = 1; i * i <= f; i ++){
		if (f % i == 0) d[++ cnt] = i, d[++ cnt] = f / i;
	}
	sort(d + 1, d + cnt + 1); // 计算phi的因子 
	
	bool ok = 0;
	for (int i = 1; i <= cnt; i ++){
		//printf("%lld ", power(10, d[i], a));
		if(power(10, d[i], a) == 1) { ok = 1; printf("%lld\n", d[i]); break; }
	}
	if (!ok) printf("0\n");
} 

int main()
{
	int tot = 0;
	while(scanf("%lld", &n) != EOF){
		if (n == 0) break;
		printf("Case %d: ", ++ tot);
		cnt = 0;
		doit();
	}
	return 0;
}



版权声明:本文为博主原创文章,未经博主允许不得转载。 举报

相关文章推荐

POJ 3696 The Luckiest Number 欧拉函数

/* 《数论及应用》P164 */ #pragma warning(disable:4786) #pragma comment(linker, "/STACK:102400000,102400...

有关欧几里德(Euclid)几何原本的感想

&lt;style type="text/css"&gt; &lt;!-- @page {margin:2cm} p {margin-bottom:0.21cm} --&gt; &lt;/style&gt; 在公元前,欧几里德“几何原本”出现了,标志着数学公理化进程的开端。实际上,几何原本的内容包括了现代的代数与数论,只不过用几何语言表述罢了。可以说,数学公理化的历史进程十分久远,绝对不是某个现代作家心血来潮、突发奇想的结果。

POJ 3696 The Luckiest number(欧拉函数)

 题意:给出一个数L,现在要求一个数A,使得L|A,并且A的每一位都是8,问A的最少位数是多少。 思路: 代码: #include #include #include #include...

ACM-欧几里德算法

新浪博客 发表时间 -- 2009-07-26 20:39:22 欧几里德算法又称辗转相除法,用于计算两个整数a,b的最大公约数。其计算原理依赖于下面的定理:   定理:gcd(a,b) = gcd(b,a mod b)   证明:a可以表示成a = kb + r,则r = a mod b   假设d是a,b的一个公约数,则有   d|a, d|b,而r = a - kb,因此d|r   因此d是(b,a mod b)的公约数   假设d 是(b,a mod b)的公约数,则   d
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)