小小的模线性方程(组)

原创 2015年11月20日 07:42:05

1).poj1006.生理周期

已知四个数 p, e, i, d,求一个数 a,满足 a % 23 = p,a % 28 = e,a % 33 = i,输出 a - d。特别地,a 不能超过 21252

因为 23,28,33 两两互质,所以这道题就是中国剩余定理。

#include <cstdio>

using namespace std;

typedef long long LL;

LL p, e, i, lcm, d;
int tot = 0;

void doit()
{
	++ tot;
	lcm = 21252;
	LL t = (5544 * p + 14421 * e + 1288 * i - d + lcm) % lcm;
	if (t == 0) t = 21252;
	printf("Case %d: the next triple peak occurs in %lld days.\n", tot, t);
}

int main()
{
	while (scanf("%lld%lld%lld%lld", &p, &e, &i, &d) != EOF){
		if (p == -1 && e == -1 && i == -1 && d == -1) break;
		doit();
	}
	return 0;
}

2).poj2891.Strange Way to Express Integers

x = ri (mod ai),求x 的最小非负整数值。

中国剩余定理?不能用啦!因为没有保证 ai 互质。换一种方法?

假设我们已经求出了前若干个方程的一个解 T,之前的方程中所有ai的最小公倍数为 lcm可以发现 T+k*lcm为常数)也是前若干个方程的解。加入当前方程后,问题转化为:找到一个 k,使 (T + k * lcm) mod ai = ri,也就是lcm * k ≡ ri - T (modai)。这又是一个一次线性同余方程的问题了。因此用 exgcd 解 N 次线性同余方程,就可以求出这个线性同余方程组的解。
#include <cstdio>

using namespace std;

typedef long long LL;

int n;
LL a1, a2, r1, r2, x, y, d;

void init()
{
	scanf("%I64d%I64d", &a1, &r1);
}

void ex_gcd(LL a, LL b, LL &d, LL &x, LL &y)
{
	if (!b){
		x = 1; y = 0; d = a;
		return;
	} else {
		ex_gcd(b, a % b, d, x, y);
		int t = x;
		x = y; y = t - a / b * x;
	}
}

void doit()
{
	bool flag = 1;
	for (int i = 2; i <= n; i ++){
		scanf("%I64d%I64d", &a2, &r2);
		LL a = a1, b = a2, c = r2 - r1;
		ex_gcd(a, b, d, x, y);
		
		if (c % d) flag = 0;
		
		LL t = b / d;
		x = (((x * c / d) % t) + t) % t;
		r1 = a1 * x + r1;
		a1 = a1 * a2 / d;
	}
	if(!flag) r1 = -1;
	printf("%I64d\n", r1);
}

int main()
{
	while(scanf("%d", &n) != EOF){
		init();
		doit();
	}
	return 0;
}



版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

中国剩余定理(CRT):求解模线性方程组

中国剩余定理CRT 平生写过的最浮夸的博客。。

pku 2891Strange Way to Express Integers 一元模线性方程组解释+题解

一元模线性方程组指的是如下形式的方程组:                             x = r1 (mod a1)     x...

codeforces round 360 div2 Remainders Game gcd+模线性方程组

/* 题目描述:给出n个数c1 , c2 , ... , cn ,以及一个正整数k(所有数都是<=1e6的正整数)问是否对于任意的x,只要知道了 x%c1 , x%c2 ...

Biorhythms(求模线性方程组--中国剩余定理的完美诠释)

Link:http://poj.org/problem?id=1006 Biorhythms Time Limit: 1000MS   Memo...

hdu1573 X问题 一元模线性方程组

/* 题目描述:给出含m(1<= m <= 10)个形如x=bi (mod ai)的模线性方程组,问该方程组小于等于(1 <= n n 无解; 否则令r+lcm

HDU 1573 X的问题(模线性方程组)

原题链接:Here! 思路:稍后补 代码: #include using namespace std; int N,m; int exgcd(int a,int b,int &x,int &y)...

hihocoder 1303 : 数论六·模线性方程组

hihocoder 1303 描述 小Ho:今天我听到一个挺有意思的故事! 小Hi:什么故事啊? 小Ho:说秦末,刘邦的将军韩信带领1500名士兵经历了一场战斗,战死四...

poj 2065 SETI(高斯消元求模线性方程组)

题意: 给出一个方程f (k) = ∑0aiki (mod p) always evaluates to values 0 每个字母代表一个f[k], a代表1,b代表2,以此类推,*代表0.让你求...

【数论】poj2891 Strange Way to Express Integers(一般模线性方程组)

来源:http://www.cnblogs.com/Missa/archive/2013/06/01/3112536.html 不满足中国余数定理,一般模线性方程组 /**********...

hdu3597Hello Kiki 一元模线性方程组

/* 题目描述:有一堆硬币,每堆mi个的数剩ai个(1<= i <=6)问这堆硬币最少多少个 方法:设硬币有X个 X = mi * yi + ai , 所以有X = ai (...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)