关闭

第十周练习 1006 月之数

227人阅读 评论(0) 收藏 举报
分类:

Problem Description

当寒月还在读大一的时候,他在一本武林秘籍中(据后来考证,估计是计算机基础,狂汗-ing),发现了神奇的二进制数。
如果一个正整数m表示成二进制,它的位数为n(不包含前导0),寒月称它为一个n二进制数。所有的n二进制数中,1的总个数被称为n对应的月之数。
例如,3二进制数总共有4个,分别是4(100)、5(101)、6(110)、7(111),他们中1的个数一共是1+2+2+3=8,所以3对应的月之数就是8。

Input

给你一个整数T,表示输入数据的组数,接下来有T行,每行包含一个正整数 n(1<=n<=20)。

Output

对于每个n ,在一行内输出n对应的月之数。

Sample Input

3
1
2
3

Sample Output

1
3
8

这算递归嘛?

总之……各种折腾,先是折腾阶乘和组合的写法,然后发现数字溢出了……OTZ

最后算是做出来了,感觉不错,学到新东西了。

#include<stdio.h>
__int64 jc(int i)
{
	__int64 sum=1;
	int j;
	for(j=2;j<=i;j++)
		sum*=j;
	return sum;	
}
__int64 pl(int a,int b)
{
	__int64 sum;
	int c;
	c=b-a;
	sum=jc(b)/(jc(c)*jc(a));
	return sum;
}
int main()
{
	int n,i,a;
	__int64 sum;
	while(scanf("%d",&n)!=EOF)
	{
		while(n--)
		{
			scanf("%d",&a);
			if(a==0)
			{
				sum=0;
			}
			else 
			{
				sum=1;
				int j=0;
				for(i=1;i<a;i++)
				{
					sum+=pl(i,a-1)*i;
					j+=pl(i,a-1);
				}
				sum+=j;
			}
		printf("%I64d\n",sum);	
		}
	}
	return 0;
}

0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:35597次
    • 积分:2693
    • 等级:
    • 排名:第13470名
    • 原创:247篇
    • 转载:0篇
    • 译文:0篇
    • 评论:2条