用递归和非递归两种方式找出所有排列

原创 2015年11月21日 20:29:15

用递归和非递归两种方式找出所有排列:

class Solution {
public:
    void helper(vector<vector<int> > &result, vector<int> &nums, vector<int> &path, vector<bool> &visited){
        if(path.size() == nums.size()){
            result.push_back(path);
            return;
        }
        for(int i = 0; i < nums.size(); i++){
            if(visited[i]){
                continue;
            }
            visited[i] = true;
            path.push_back(nums[i]);
            helper(result, nums, path, visited);
            path.pop_back();
            visited[i] = false;
        }
    }
    /**
     * @param nums: A list of integers.
     * @return: A list of permutations.
     */
    vector<vector<int> > permute1(vector<int> nums) {
        // write your code here
        int n = nums.size();
        vector<vector<int> > result;
        if(n == 0){
            return result;
        }
        vector<int> path;
        vector<bool> visited(n, false);
        helper(result, nums, path, visited);
        return result;
    }
    
    // non-recursive
    vector<vector<int> > permute(vector<int> nums) {
        int n = nums.size();
        vector<vector<int> > result;
        if(n == 0){
            return result;
        }
        vector<int> list;
        list.push_back(-1);// 储存上一次遍历的下标
        while(!list.empty()){
            int last = list.back();
            list.pop_back(); // 去掉最后一次遍历的元素
            
            int next = -1;
            for(int i = last+1; i < n; i++){ // 找下一个还没有visited的元素
                if(find(list.begin(), list.end(), i) == list.end()){
                    next = i;
                    break;
                }
            }
            if(next == -1) { // 没找到
                continue;
            }
            //放入下一个没有visited的元素
            list.push_back(next);
            //再放入剩下的没有visited的元素
            for(int i = 0; i < n; i++){
                if(find(list.begin(), list.end(), i) == list.end()){
                    list.push_back(i);
                }
            }
            
            // copy to permutation
            vector<int> permut;
            for(int i = 0; i < list.size(); i++){
                permut.push_back(nums[list[i]]);
            }
            result.push_back(permut);
        }
        return result;
    }
};


分治策略(递归,排列问题)

1、递归概念       直接或者间接调用自身的算法叫做递归算法。用函数自身给出定义的函数称为递归函数。有些数据结构,比如二叉树等,由于自身固有的递归特性,特别适合用递归来描述。        递归算...
  • Robin__Chou
  • Robin__Chou
  • 2015年03月05日 17:40
  • 1762

递归处理全排列问题的两种方法

#include #include #include #include #include #include #include using namespace std; void permutati...
  • qq_22194315
  • qq_22194315
  • 2017年01月10日 13:27
  • 215

二分查找的两种实现方式--循环和递归

package com.ming.test; import java.util.Arrays; public class binarySearch { public static int bin...
  • basycia
  • basycia
  • 2016年08月14日 22:11
  • 382

全排列递归算法详解

一、概述全排列在很多程序都有应用,是一个很常见的算法,常规的算法是一种递归的算法,这种算法的得到基于以下的分析思路。 给定一个具有n个元素的集合(n>=1),要求输出这个集合中元素的所有可能的排列。...
  • sihai12345
  • sihai12345
  • 2017年04月06日 14:47
  • 608

递归解决全排列问题+详细图解递归执行

问题描述:字符串的排列 //输入一个字符串, 按字典序打印出该字符串中字符的所有排列。 //例如输入字符串abc, 则打印出由字符a, b, c所能排列出来的所有字符串abc, acb, bac, ...
  • songshiMVP1
  • songshiMVP1
  • 2016年06月08日 15:59
  • 877

n的全排列递归算法

思路: 可以通过递归的方法把n的全排列问题转化为n-1的全排列问题,逐渐推导到一个数字的全排列,显然一个数字的全排列方式只有一种,下面就展示实现该过程的实现代码: #include using ...
  • hero_boke
  • hero_boke
  • 2017年02月28日 20:43
  • 1152

全排列的递归和非递归实现(permutation)(C++)

全排列问题具体问题描述和思路请参考这篇文章: http://blog.csdn.net/morewindows/article/details/7370155/以下是C++代码实现://Permut...
  • bcj296050240
  • bcj296050240
  • 2016年04月09日 20:06
  • 1257

递归回溯打印全排列(两种方法求解)

打印全排列问题:给定一个数n,要求打印123...n的所有全排列.例如n=4,则所有的全排列为: 1 2 3 4 1 2 4 3 1 3 2 4 1 3 4 2 1 4 2 3 1 4 3 2 ......
  • ten_sory
  • ten_sory
  • 2017年03月30日 23:05
  • 450

递归分治算法之全排列(C语言)

递归与分治算法之字符全排列 一、问题描述 设有数组char a[]={‘a’,’b’,’c’,’d’,’e’,’f’}; 设计一个程序来实现数组中所有的字符组成的有序序列输出。例如‘a’,‘b’组...
  • change_angle
  • change_angle
  • 2016年03月05日 10:40
  • 1460

全排列的实现方法--递归&字典序

一:背景 全排列在很多笔试都有应用,是一个很常见的算法,关于这类的题目变化很多。这种算法的得到基于以下的分析思路。  给定一个具有n个元素的集合(n>=1),要求输出这个集合中元素的所有可能的排列。 ...
  • LaoJiu_
  • LaoJiu_
  • 2016年04月11日 15:33
  • 5352
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:用递归和非递归两种方式找出所有排列
举报原因:
原因补充:

(最多只允许输入30个字)