关闭

关于java用jni调用 dll动态库Can't find dependent libraries错误的解决

ref:http://sylar029.iteye.com/blog/1171260  最近在做一些java开发的时候,需要调用操作系统底层的一些东西,所以我用c++ 写了一个dll动态库文件,通过java的JNI进行调用。dll 文件生成之后 在本机用java调用没有问题,  但是换了一台主机就报错了,报错如下: java.lang.UnsatisfiedLinkErro...
阅读(866) 评论(0)

变分推断(variational inference)学习笔记(1)——概念介绍

ref:http://www.crescentmoon.info/?p=709#more-709 问题描述 变分推断是一类用于贝叶斯估计和机器学习领域中近似计算复杂(intractable)积分的技术,它广泛应用于各种复杂模型的推断。本文是学习PRML第10章的一篇笔记,错误或不足的地方敬请指出。 先给出问题描述。记得在上一篇EM的文章中,我们有一个观察变量X={x{1},…,x...
阅读(5995) 评论(0)

变分推断学习笔记(2)——一维高斯模型的例子

ref:http://www.crescentmoon.info/?p=745...
阅读(1013) 评论(0)

变分推断学习笔记

ref:http://www.crescentmoon.info/?p=709#more-709 问题描述 变分推断是一类用于贝叶斯估计和机器学习领域中近似计算复杂(intractable)积分的技术,它广泛应用于各种复杂模型的推断。本文是学习PRML第10章的一篇笔记,错误或不足的地方敬请指出。 先给出问题描述。记得在上一篇EM的文章中,我们有一个观察变量X={x{1}...
阅读(713) 评论(0)

文本向量表示及TFIDF词汇权值

文本相似计算是进行文本聚类的基础,和传统结构化数值数据的聚类方法类似,文本聚类是通过计算文本之间"距离"来表示文本之间的相似度并产生聚类。文本相似度的常用计算方法有余弦定理和Jaccard系数。但是文本数据与普通的数值数据或类属数据不同,文本数据是一种半结构化数据,在进行文本挖掘之前必须要对文本数据源进行处理,如分词、向量化表示等,其目的就是使用量化的数值来表达这些半结构化的文本数据。使其适用于分...
阅读(716) 评论(0)

crf

条件随机场模型是由Lafferty在2001年提出的一种典型的判别式模型。它在观测序列的基础上对目标序列进行建模,重点解决序列化标注的问题条件随机场模型既具有判别式模型的优点,又具有产生式模型考虑到上下文标记间的转移概率,以序列化形式进行全局参数优化和解码的特点,解决了其他判别式模型(如最大熵马尔科夫模型)难以避免的标记偏置问题。 条件随机场理论(CRFs)可以用于序列标记、...
阅读(459) 评论(0)

条件随机场(CRF)

关联数据有两个特点:第一,我们准备建立模型的实体之间存在统计依赖性,第二,每个实体自身具有丰富的有利于分类的特征例如,当Web文档进行分类时候,网页上的文本类标签提供了很多信息,但超链接定义的页面之间的关系,可以进一步提高分类的准确度,图模型很自然的建立了实体之间的结构化关系。通常来讲,图模型已被用于表示联合概率分布P(Y,X),其中的变量y代表我们希望预测的属性,输入变量X代表获得的实体信息。利...
阅读(487) 评论(0)

数据归一化和两种常用的归一化方法

转载自:http://www.cnblogs.com/chaosimple/p/3227271.html...
阅读(992) 评论(0)

数据归一化和两种常用的归一化方法

数据标准化(归一化)处理是数据挖掘的一项基础工作,不同评价指标往往具有不同的量纲和量纲单位,这样的情况会影响到数据分析的结果,为了消除指标之间的量纲影响,需要进行数据标准化处理,以解决数据指标之间的可比性。原始数据经过数据标准化处理后,各指标处于同一数量级,适合进行综合对比评价。以下是两种常用的归一化方法: 一、min-max标准化(Min-Max Normalization) 也称为...
阅读(329) 评论(0)

特征选择方法之信息增益

前文提到过,除了开方检验(CHI)以外,信息增益(IG,Information Gain)也是很有效的特征选择方法。但凡是特征选择,总是在将特征的重要程度量化之后再进行选择,而如何量化特征的重要性,就成了各种方法间最大的不同。开方检验中使用特征与类别间的关联性来进行这个量化,关联性越强,特征得分越高,该特征越应该被保留。 在信息增益中,重要性的衡量标准就是看特征能够为分类系统带来多少信息,带来的...
阅读(360) 评论(0)

隐马尔可夫模型 最大熵马尔可夫模型 条件随机场 区别和联系

隐马尔可夫模型(Hidden Markov Model,HMM),最大熵马尔可夫模型(Maximum Entropy Markov Model,MEMM)以及条件随机场(Conditional Random Field,CRF)是序列标注中最常用也是最基本的三个模型。HMM首先出现,MEMM其次,CRF最后。三个算法主要思想如下: HMM模型是对转移概率和表现概率直接建模,统计共现概率。ME...
阅读(1455) 评论(0)

LDA话题模型

(一)LDA作用         传统判断两个文档相似性的方法是通过查看两个文档共同出现的单词的多少,如TF-IDF等,这种方法没有考虑到文字背后的语义关联,可能在两个文档共同出现的单词很少甚至没有,但两个文档是相似的。         举个例子,有两个句子分别如下:                 “乔布斯离我们而去了。”                 “苹果价格会不会...
阅读(408) 评论(0)

吸收马尔科夫链

一、 吸收态马尔可夫链 马尔可夫链是一种比较常用、 比较熟悉的随机过程, 它描述的是这样的情形 一个系统具有有限个状态, 系统在下一时刻的状态取决于 系统现在所处的状态 , 而与以前的状态无关 , 即系统 具有无后效性 系统由一种状态转移至 另一种 状 态的过程称为马尔可夫过程 马尔可夫 过程按照 其状态是离散的或是连续的 , 分别称为状态离散 的马尔可夫过程或状态连续的马 尔可夫...
阅读(1761) 评论(0)

条件随机场(CRF)

关联数据有两个特点:第一,我们准备建立模型的实体之间存在统计依赖性,第二,每个实体自身具有丰富的有利于分类的特征例如,当Web文档进行分类时候,网页上的文本类标签提供了很多信息,但超链接定义的页面之间的关系,可以进一步提高分类的准确度,图模型很自然的建立了实体之间的结构化关系。通常来讲,图模型已被用于表示联合概率分布P(Y,X),其中的变量y代表我们希望预测的属性,输入变量X代表获得的实体信息。利...
阅读(452) 评论(0)

EM算法

EM算法 本文试图用最简单的例子、最浅显的方式说明EM(Expectation Maximization)算法的应用场景和使用方法,而略去公式的推导和收敛性的证明。 以下内容翻译自《Data-Intensive Text Processing with MapReduce》。 Maximum Likelihood Estimation Maximum Likelihood Esti...
阅读(292) 评论(0)
21条 共2页1 2 下一页 尾页
    个人资料
    • 访问:20173次
    • 积分:234
    • 等级:
    • 排名:千里之外
    • 原创:0篇
    • 转载:21篇
    • 译文:0篇
    • 评论:0条
    文章分类
    文章存档