01背包、完全背包、多重背包问题分析

原创 2016年08月29日 10:02:11

背包问题可以用递归方法和动态规划方法,递归代码简洁,方便理解,不过由于重复计算,效率较低,DP方法将前面的计算结果保存到二维数组中,效率较高,值得推荐。

1. 01背包(ZeroOnePack): 有n件物品和一个容量为m的背包。(每种物品均只有一件)第i件物品的费用是weight[i],价值是value[i]。求解将哪些物品装入背包可使价值总和最大。

解题思路:对于每个物品只考虑两种情况(放or不放),放的前提是当前物品的重量小于背包的容量,而且放该物品时收获的总价值大于不放该物品时的总价值,我们使用weight数组表示物品的重量,value数组表示物品的价值,m表示背包的容量,n表示第n可以放或者不放,表示为递归函数关系可以表示如下:

if(weight[n]>m)
	return recursion(weight,value,m,n-1);
else
	return max(recursion(weight,value,m,n-1),recursion(weight,value,m-weight[n],n-1)+value[n]);
上述递归方法会有大量的递归重复计算,为了避免发生这种情况,我们使用DP方法,创建一个二维数组保存res,则res[i][j]表示当背包容量为i时,将前j个物品放入背包能够获得的最大价值,若当前物品重量小于背包容量,则比较放该物品时的价值res[i-weight[j]][j-1]+value[j]和不放该物品时前j-1个物品放入容量为i的背包带来的最大价值res[i][j-1],递归关系可以表示如下:

if(weight[j]<=i){
	res[i][j]=max(res[i][j-1],res[i-weight[j]][j-1]+value[j]);}
else
	res[i][j]=res[i][j-1];

DP程序源码:

#include <iostream>
#include <vector>
using namespace std;
int main(){
	int m,n;
	//cin>>m>>n;
	m=10;
	n=5;
	vector<int> weight(n+1,0);
	vector<int> value(n+1,0);
	int array1[6]={0,2,2,6,5,4};
	int array2[6]={0,6,3,5,4,6};
	for(int i=1;i<n+1;++i){		
		//cin>>weight[i];
		weight[i]=array1[i];		
	}
	for(int i=1;i<n+1;++i){
		//cin>>value[i];
		value[i]=array2[i];
	}
	vector< vector<int> > res(m+1);
	for(int i=0;i<m+1;++i)
	res[i].resize(n+1);
	for(int i=0;i<m+1;++i){
		for(int j=0;j<n+1;++j){
			if(i==0||j==0){
				res[i][j]=0;
				continue;
			}
			if(weight[j]<=i){
				res[i][j]=max(res[i][j-1],res[i-weight[j]][j-1]+value[j]);
			}
			else
			res[i][j]=res[i][j-1];			
		}
	}
	for(int i=0;i<m+1;++i){
		for(int j=0;j<n+1;++j){
			cout<<res[i][j]<<" ";
		}
		cout<<endl;
	}
	return 0;
}
递归方法程序源码:
#include <iostream>
#include <vector>
using namespace std;
int recursion(vector<int>& weight,vector<int>& value,int m,int n){
	if(m==0||n==0)
	return 0;
	if(weight[n]>m)
	return recursion(weight,value,m,n-1);
	else
	return max(recursion(weight,value,m,n-1),recursion(weight,value,m-weight[n],n-1)+value[n]);
}
int main(){
	int m,n;
	//cin>>m>>n;
	m=10;
	n=5;
	vector<int> weight(n+1,0);
	vector<int> value(n+1,0);
	int array1[6]={0,2,2,6,5,4};
	int array2[6]={0,6,3,5,4,6};
	for(int i=1;i<n+1;++i){		
		//cin>>weight[i];
		weight[i]=array1[i];		
	}
	for(int i=1;i<n+1;++i){
		//cin>>value[i];
		value[i]=array2[i];
	}
	cout<<recursion(weight,value,m,n)<<endl;	
	return 0;
}

m=10;
n=5;
int array1[6]={0,2,2,6,5,4};
int array2[6]={0,6,3,5,4,6};

使用如上的一组测试数据,实验结果如下图所示:



2. 完全背包(CompletePack): 有N种物品和一个容量为V的背包,每种物品都有无限件可用。第i种物品的费用是c[i],价值是w[i]。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。

解题思路:参考01背包思想,只有一点稍微的改动即可,当考虑将物品j放入容量为i的背包时,如果物品j的重量小于背包容量i,比较放入物品j时res[i-weight[j]][j]+value[j]和不放物品j时res[i][j-1],只是第一种情况调整下基准位置的参考结果,物品可以放无数次。

DP方法程序源码:

#include <iostream>
#include <vector>
using namespace std;
int main(){
	int m,n;
	//cin>>m>>n;
	m=10;
	n=5;
	vector<int> weight(n+1,0);
	vector<int> value(n+1,0);
	int array1[6]={0,2,2,6,5,4};
	int array2[6]={0,6,3,5,4,6};
	for(int i=1;i<n+1;++i){		
		//cin>>weight[i];
		weight[i]=array1[i];		
	}
	for(int i=1;i<n+1;++i){
		//cin>>value[i];
		value[i]=array2[i];
	}
	vector< vector<int> > res(m+1);
	for(int i=0;i<m+1;++i)
	res[i].resize(n+1);
	for(int i=0;i<m+1;++i){
		for(int j=0;j<n+1;++j){
			if(i==0||j==0){
				res[i][j]=0;
				continue;
			}
			if(weight[j]<=i){
				res[i][j]=max(res[i][j-1],res[i-weight[j]][j]+value[j]);
			}
			else
			res[i][j]=res[i][j-1];			
		}
	}
	for(int i=0;i<m+1;++i){
		for(int j=0;j<n+1;++j){
			cout<<res[i][j]<<" ";
		}
		cout<<endl;
	}
	return 0;
}

递归方法源码:

#include <iostream>
#include <vector>
using namespace std;
int recursion(vector<int>& weight,vector<int>& value,int m,int n){
	if(m==0||n==0)
	return 0;
	if(weight[n]>m)
	return recursion(weight,value,m,n-1);
	else
	return max(recursion(weight,value,m,n-1),recursion(weight,value,m-weight[n],n)+value[n]);
}
int main(){
	int m,n;
	//cin>>m>>n;
	m=10;
	n=5;
	vector<int> weight(n+1,0);
	vector<int> value(n+1,0);
	int array1[6]={0,2,2,6,5,4};
	int array2[6]={0,6,3,5,4,6};
	for(int i=1;i<n+1;++i){		
		//cin>>weight[i];
		weight[i]=array1[i];		
	}
	for(int i=1;i<n+1;++i){
		//cin>>value[i];
		value[i]=array2[i];
	}
	cout<<recursion(weight,value,m,n)<<endl;	
	return 0;
}


3. 多重背包(MultiplePack): 有N种物品和一个容量为V的背包。第i种物品最多有n[i]件可用,每件费用是c[i],价值是w[i]。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。

解题思路:相比于前面描述的01背包和完全背包,这里多重背包增加了物品数量限制,所以在每次判断装入物品j时,判断最多能放入多少个物品j,针对每一个物品j计算最大价值,然后取最大的一个即可。

DP方法程序源码:

#include <iostream>
#include <vector>
using namespace std;
int main(){
	int m,n;
	//cin>>m>>n;
	m=10;
	n=5;
	vector<int> weight(n+1,0);
	vector<int> value(n+1,0);
	vector<int> size(n+1,0);
	int array1[6]={0,2,2,6,5,4};
	int array2[6]={0,6,3,5,4,6};
	int array3[6]={0,1,1,4,5,1};
	for(int i=1;i<n+1;++i){		
		//cin>>weight[i];
		weight[i]=array1[i];		
	}
	for(int i=1;i<n+1;++i){
		//cin>>value[i];
		value[i]=array2[i];
	}
	for(int i=1;i<n+1;++i){
		//cin>>size[i];
		size[i]=array3[i];
	}
	vector< vector<int> > res(m+1);
	for(int i=0;i<m+1;++i)
	res[i].resize(n+1);
	for(int i=0;i<m+1;++i){
		for(int j=0;j<n+1;++j){
			if(i==0||j==0){
				res[i][j]=0;
				continue;
			}
			if(weight[j]<=i){
				int numOfValue=min(i/weight[j],size[j]);
				int maxValue=0;
				for(int k=0;k<=numOfValue;++k){
					int temp=res[i-weight[j]*k][j-1]+value[j]*k;					
					maxValue=max(maxValue,temp);
				}
				res[i][j]=maxValue;
			}
			else
			res[i][j]=res[i][j-1];			
		}
	}
	for(int i=0;i<m+1;++i){
		for(int j=0;j<n+1;++j){
			cout<<res[i][j]<<" ";
		}
		cout<<endl;
	}
	return 0;
}

递归方法程序源码:

#include <iostream>
#include <vector>
using namespace std;
int recursion(vector<int>& weight,vector<int>& value,vector<int>& size,int m,int n){
	if(m==0||n==0)
	return 0;
	if(weight[n]>m)
	return recursion(weight,value,size,m,n-1);
	else
	{
		int numOfValue=min(m/weight[n],size[n]);
		int maxValue=0;
		for(int i=0;i<=numOfValue;++i){
			int temp=recursion(weight,value,size,m-weight[n]*i,n-1)+value[n]*i;
			maxValue=max(maxValue,temp);
		}
		return maxValue;
	}	
}
int main(){
	int m,n;
	//cin>>m>>n;
	m=10;
	n=5;
	vector<int> weight(n+1,0);
	vector<int> value(n+1,0);
	vector<int> size(n+1,0);
	int array1[6]={0,2,2,6,5,4};
	int array2[6]={0,6,3,5,4,6};
	int array3[6]={0,1,1,4,5,1};
	for(int i=1;i<n+1;++i){		
		//cin>>weight[i];
		weight[i]=array1[i];		
	}
	for(int i=1;i<n+1;++i){
		//cin>>value[i];
		value[i]=array2[i];
	}
	for(int i=1;i<n+1;++i){
		//cin>>value[i];
		size[i]=array3[i];
	}
	cout<<recursion(weight,value,size,m,n)<<endl;	
	return 0;
}
实验结果:


版权声明:本文为博主原创文章,未经博主允许不得转载。

经典背包问题 01背包+完全背包+多重背包

01 背包 有n 种不同的物品,每个物品有两个属性,size 体积,value 价值,现在给一个容量为 w 的背包,问最多可带走多少价值的物品。           int f[w+1];   //...

中级篇——背包问题3(多重背包)

上一篇讲的完全背包是指在所有物品件数无限多的情况下选择最值,现在引申出多重背包问题,即各物品个数均有限且不一定相同,求轙类情况下的最值。...

背包问题详解:01背包、完全背包、多重背包

参考链接: http://www.cnblogs.com/fengty90/p/3768845.html http://blog.csdn.net/mu399/article/details/7722...

动态规划-----背包问题-----01背包,完全背包,多重背包

原文地址:http://www.wutianqi.com/?p=539 首先把三种情况放在一起来看: 01背包(ZeroOnePack):  有N件物品和一个容量为V的背包。(每种物品均只有一件...
  • zzukun
  • zzukun
  • 2012年08月10日 20:01
  • 9253

01背包,完全背包,多重背包问题详细介绍以及源代码实现

背包问题 部分内容转载自:http://www.cppblog.com/tanky-woo/archive/2010/07/31/121803.html 背包的基本模型就是给你一个容量为V的背包 ...

多重背包问题

描述 给定M(1

多重背包问题

多重背包问题声明原题:有n种物品,第i种物品的重量为wi,价值为vi,共ti个。 现在有一个载重量为W的背包,在不超重的情况下,使放入背包的物品价值总和最大。 求最大的价值总和。 纯DP设Fi,jF_...

背包问题【01、完全(恰好or不超过)、多重】【尚未整理完】

背包问题 以下整理自:背包问题九讲笔记_01背包 摘自Tianyi Cui童鞋的《背包问题九讲》,稍作修改,方便理...

多重背包O(N*V)算法详解(使用单调队列)

多重背包问题:有N种物品和容量为V的背包,若第i种物品,容量为v[i],价值为w[i],共有n[i]件。怎样装才能使背包内的物品总价值最大?网上关于“多重背包”的资料倒是不少,但是关于怎么实现O(N*...

背包问题(0-1背包、完全背包、多重背包)详解

背包问题一个背包总容量为V, 现在有N个物品, 第i个物品体积为weight[i], 价值为value[i], 现在往背包里面装东西, 怎样装才能使背包内物品总价值最大.求解思路利用动态规划求最优值的...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:01背包、完全背包、多重背包问题分析
举报原因:
原因补充:

(最多只允许输入30个字)