[总结]KMP算法

转载 2016年08月29日 20:34:44
refer:
http://www.ruanyifeng.com/blog/2013/05/Knuth–Morris–Pratt_algorithm.html
http://blog.csdn.net/karldoenitz/article/details/8076672

1. 原理
字符串匹配是计算机的基本任务之一。
举例来说,有一个字符串"BBC ABCDAB ABCDABCDABDE",我想知道,里面是否包含另一个字符串"ABCDABD"?
许多算法可以完成这个任务,Knuth-Morris-Pratt算法(简称KMP)是最常用的之一。它以三个发明者命名,起头的那个K就是著名科学家Donald Knuth
这种算法不太容易理解,网上有很多解释,但读起来都很费劲。直到读到Jake Boxer的文章,我才真正理解这种算法。下面,我用自己的语言,试图写一篇比较好懂的KMP算法解释。
[总结]KMP算法
首先,字符串"BBC ABCDAB ABCDABCDABDE"的第一个字符与搜索词"ABCDABD"的第一个字符,进行比较。因为B与A不匹配,所以搜索词后移一位。
[总结]KMP算法

因为B与A不匹配,搜索词再往后移。
[总结]KMP算法

就这样,直到字符串有一个字符,与搜索词的第一个字符相同为止。
[总结]KMP算法
接着比较字符串和搜索词的下一个字符,还是相同。
[总结]KMP算法
直到字符串有一个字符,与搜索词对应的字符不相同为止。
[总结]KMP算法
这时,最自然的反应是,将搜索词整个后移一位,再从头逐个比较。这样做虽然可行,但是效率很差,因为你要把"搜索位置"移到已经比较过的位置,重比一遍。
[总结]KMP算法
一个基本事实是,当空格与D不匹配时,你其实知道前面六个字符是"ABCDAB"。KMP算法的想法是,设法利用这个已知信息,不要把"搜索位置"移回已经比较过的位置,继续把它向后移,这样就提高了效率。
[总结]KMP算法
怎么做到这一点呢?可以针对搜索词,算出一张《部分匹配表》(Partial Match Table)。这张表是如何产生的,后面再介绍,这里只要会用就可以了。

[总结]KMP算法
已知空格与D不匹配时,前面六个字符"ABCDAB"是匹配的。查表可知,最后一个匹配字符B对应的"部分匹配值"为2,因此按照下面的公式算出向后移动的位数:
  移动位数 = 已匹配的字符数 - 对应的部分匹配值
因为 6 - 2 等于4,所以将搜索词向后移动4位。
[总结]KMP算法
因为空格与C不匹配,搜索词还要继续往后移。这时,已匹配的字符数为2("AB"),对应的"部分匹配值"为0。所以,移动位数 = 2 - 0,结果为 2,于是将搜索词向后移2位。
[总结]KMP算法
因为空格与A不匹配,继续后移一位。
[总结]KMP算法
逐位比较,直到发现C与D不匹配。于是,移动位数 = 6 - 2,继续将搜索词向后移动4位。
[总结]KMP算法
逐位比较,直到搜索词的最后一位,发现完全匹配,于是搜索完成。如果还要继续搜索(即找出全部匹配),移动位数 = 7 - 0,再将搜索词向后移动7位,这里就不再重复了。
下面介绍《部分匹配表》是如何产生的。
首先,要了解两个概念:"前缀"和"后缀"。 "前缀"指除了最后一个字符以外,一个字符串的全部头部组合;"后缀"指除了第一个字符以外,一个字符串的全部尾部组合。
[总结]KMP算法
"部分匹配值"就是"前缀"和"后缀"的最长的共有元素的长度。以"ABCDABD"为例,
  - "A"的前缀和后缀都为空集,共有元素的长度为0;
  - "AB"的前缀为[A],后缀为[B],共有元素的长度为0;
  - "ABC"的前缀为[A, AB],后缀为[BC, C],共有元素的长度0;
  - "ABCD"的前缀为[A, AB, ABC],后缀为[BCD, CD, D],共有元素的长度为0;
  - "ABCDA"的前缀为[A, AB, ABC, ABCD],后缀为[BCDA, CDA, DA, A],共有元素为"A",长度为1;
  - "ABCDAB"的前缀为[A, AB, ABC, ABCD, ABCDA],后缀为[BCDAB, CDAB, DAB, AB, B],共有元素为"AB",长度为2;
  - "ABCDABD"的前缀为[A, AB, ABC, ABCD, ABCDA, ABCDAB],后缀为[BCDABD, CDABD, DABD, ABD, BD, D],共有元素的长度为0。
[总结]KMP算法
"部分匹配"的实质是,有时候,字符串头部和尾部会有重复。比如,"ABCDAB"之中有两个"AB",那么它的"部分匹配值"就是2("AB"的长度)。搜索词移动的时候,第一个"AB"向后移动4位(字符串长度-部分匹配值),就可以来到第二个"AB"的位置。

2. C++源码
<span style="color:#464646;">#include "stdafx.h"
#include
using namespace std;

void get_next(char*t, int next[ ]){
 int t_len=strlen(t);
 int i=0;         //求解每个next[i]
 next[0]=-1; //递推基本条件,然后求解next[i+1]
 int j=-1;     //向后递推位置下标
 </span><ol start="1" class="dp-cpp" style="padding: 0px; border: none; list-style-position: initial; list-style-image: initial; font-family: Consolas, "Courier New", Courier, mono, serif; margin: 0px 0px 1px 45px !important;"><li style="border-top: none; border-right: none; border-bottom: none; border-left: 3px solid rgb(153, 153, 153); border-image: initial; list-style-type: decimal-leading-zero; list-style-image: initial; background-color: rgb(249, 249, 249); line-height: 18px; margin: 0px !important; padding: 0px 3px 0px 10px !important; list-style-position: outside !important;"><span style="margin: 0px; padding: 0px; border: none; background-color: inherit;"> <span class="comment" style="margin: 0px; padding: 0px; border: none; background-color: inherit;">/*</span> </span></li><li class="alt" style="border-top: none; border-right: none; border-bottom: none; border-left: 3px solid rgb(153, 153, 153); border-image: initial; list-style-type: decimal-leading-zero; list-style-image: initial; line-height: 18px; margin: 0px !important; padding: 0px 3px 0px 10px !important; list-style-position: outside !important;"><span style="margin: 0px; padding: 0px; border: none; background-color: inherit;"><span class="comment" style="margin: 0px; padding: 0px; border: none; background-color: inherit;"> next[i]=k =>T0...Tk-1=Ti-k...Ti-1</span> </span></li><li style="border-top: none; border-right: none; border-bottom: none; border-left: 3px solid rgb(153, 153, 153); border-image: initial; list-style-type: decimal-leading-zero; list-style-image: initial; background-color: rgb(249, 249, 249); line-height: 18px; margin: 0px !important; padding: 0px 3px 0px 10px !important; list-style-position: outside !important;"><span style="margin: 0px; padding: 0px; border: none; background-color: inherit;"><span class="comment" style="margin: 0px; padding: 0px; border: none; background-color: inherit;">    求解next[i+1]</span> </span></li><li class="alt" style="border-top: none; border-right: none; border-bottom: none; border-left: 3px solid rgb(153, 153, 153); border-image: initial; list-style-type: decimal-leading-zero; list-style-image: initial; line-height: 18px; margin: 0px !important; padding: 0px 3px 0px 10px !important; list-style-position: outside !important;"><span style="margin: 0px; padding: 0px; border: none; background-color: inherit;"><span class="comment" style="margin: 0px; padding: 0px; border: none; background-color: inherit;"> 1> 如果T0..Tk-1Tk=Ti-k...Ti-1Ti=>next[i+1]=k+1=next[i]+1;</span> </span></li><li style="border-top: none; border-right: none; border-bottom: none; border-left: 3px solid rgb(153, 153, 153); border-image: initial; list-style-type: decimal-leading-zero; list-style-image: initial; background-color: rgb(249, 249, 249); line-height: 18px; margin: 0px !important; padding: 0px 3px 0px 10px !important; list-style-position: outside !important;"><span style="margin: 0px; padding: 0px; border: none; background-color: inherit;"><span class="comment" style="margin: 0px; padding: 0px; border: none; background-color: inherit;"> 2>Tk<>Ti,next[k]=k', 如果Ti=Tk'=>next[i+1]=k'+1=next[k]+1=next[next[i]]+1;</span> </span></li><li class="alt" style="border-top: none; border-right: none; border-bottom: none; border-left: 3px solid rgb(153, 153, 153); border-image: initial; list-style-type: decimal-leading-zero; list-style-image: initial; line-height: 18px; margin: 0px !important; padding: 0px 3px 0px 10px !important; list-style-position: outside !important;"><span style="margin: 0px; padding: 0px; border: none; background-color: inherit;"><span class="comment" style="margin: 0px; padding: 0px; border: none; background-color: inherit;"> 3>依次递推 最后情况next[i+1]=next[0]+1=0,即</span> </span></li><li style="border-top: none; border-right: none; border-bottom: none; border-left: 3px solid rgb(153, 153, 153); border-image: initial; list-style-type: decimal-leading-zero; list-style-image: initial; background-color: rgb(249, 249, 249); line-height: 18px; margin: 0px !important; padding: 0px 3px 0px 10px !important; list-style-position: outside !important;"><span style="margin: 0px; padding: 0px; border: none; background-color: inherit;"><span class="comment" style="margin: 0px; padding: 0px; border: none; background-color: inherit;"> */</span><span style="margin: 0px; padding: 0px; border: none; background-color: inherit;"> </span></span></li></ol><span style="color:#464646;">
 while(i<t_len)
 {
   if(j==-1 ||t[i]==t[j])  //j==-1证明已经与t[0]不匹配了,此时next[i+1]=0
   {
    i++;
    j++;
    next[i]=j;
   }
   else
   {
       j=next[j]; 
   }
 }
}
int KMP(char *s,char *t){
 int s_len=strlen(s);
 int t_len=strlen(t);
 int i=0;
 int j=0;
 int *next=new int[t_len];
 get_next(t,next);
 if(t_len>s_len) return -1;
 <span class="keyword" style="margin: 0px; padding: 0px; border: none; color: green; font-weight: bold; font-family: Consolas, "Courier New", Courier, mono, serif;">while</span><span style="margin: 0px; padding: 0px; border: none; font-family: Consolas, "Courier New", Courier, mono, serif;">(i<s_len&&j<t_len){  </span>
  if(j==-1||s[i]==t[j]){
   i++;
   j++;
  }
  else{
  j=next[j];
  }
 }//end while
 if(j>=t_len)
  return i-j;
 else
  return -1;
}
int main(void)
 {
  char *s="abcdasdefghijklmnefgh";
  char *t="efgh";
  cout<<KMP(s,t)<<endl;
       return 0;
 }</span>



【数据结构与算法】模式匹配——从BF算法到KMP算法(附完整源码)

子串的定位操作通常称为串的模式匹配。模式匹配的应用很常见,比如在文字处理软件中经常用到的查找功能。我们用如下函数来表示对字串位置的定位: int index(const string &Tag,con...
  • mmc_maodun
  • mmc_maodun
  • 2014年02月20日 00:01
  • 9846

KMP算法与朴素模式匹配算法(C语言)

在上一篇博客中介绍了KMP算法和朴素模式匹配算法的区别,本文主要针对这两种算法的C语言实现进行讲解。...
  • u011028771
  • u011028771
  • 2016年10月29日 21:57
  • 1188

KMP算法 串的模式匹配算法优秀总结

转载大神的博客受益匪浅 这几天学习kmp算法,解决字符串的匹配问题,开始的时候都是用到BF算法,(BF(Brute Force)算法是普通的模式匹配算法,BF算法的思想就是将目标串S的第一个字符...
  • ltyqljhwcm
  • ltyqljhwcm
  • 2016年05月20日 12:21
  • 1275

KMP算法学习&amp;总结

  • 2013年10月24日 19:15
  • 156KB
  • 下载

HihoCoder第三周与POJ2406:KMP算法总结

HihoCoder第三周: 输入 第一行一个整数N,表示测试数据组数。 接下来的N*2行,每两行表示一个测试数据。在每一个测试数据中,第一行为模式串,由不超过10^4个大写字母组成,第二行为原串...
  • u010885899
  • u010885899
  • 2015年04月29日 15:19
  • 359

KMP算法心得总结

KMP算法精髓在于next数组上: 1.next[]数组的定义。对于字符串s的第i个字符s[i],next[i]定义为字符s[i]前面最多有多少个连续的字符和字符串s从初始位置开始的字符匹配 。 因此...
  • JayACM
  • JayACM
  • 2017年08月01日 15:44
  • 127

拓展kmp算法总结

算法总结第二弹,上次总结了下kmp,这次就来拓展kmp吧。 拓展kmp算法是对KMP算法的扩展,它解决如下问题: 定义母串S,和字串T,设S的长度为n,T的长度为m,求T与S的每一个后缀的最长公共前...
  • dyx404514
  • dyx404514
  • 2014年12月09日 22:02
  • 8399

KMP算法小总结

KMP算法小总结字符串匹配是编程常遇到的一个问题,最朴素简单粗暴的匹配方法需要O(n2)O(n^2)的时间复杂度,这显然满足不了算法大神的要求。KMP算法是一种改进的快速的字符串匹配算法,是由D.E....
  • zhaoyunfullmetal
  • zhaoyunfullmetal
  • 2015年04月30日 21:49
  • 488

KMP算法总结及相关例题

KMP算法总结及相关例题 KMP算法的两个步骤、循环节、匹配次数
  • MartaYang
  • MartaYang
  • 2017年01月20日 20:51
  • 128

KMP算法总结

KMP算法:就是按自左向右的方向进行匹配,在匹配过程中,当模式串P不匹配时,应尽量向右移动最大距离,以避免重复比较。 假设目标串T=t0,t1,t2,,,,,,tn模式串P=p0,p1,.........
  • smallacmer
  • smallacmer
  • 2011年10月30日 11:42
  • 451
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:[总结]KMP算法
举报原因:
原因补充:

(最多只允许输入30个字)