算法概论习题-8.3证明吝啬SAT问题是NP-Complete

题目:STINGY SAT is the following problem:given a set of clauses(each a disjunction of literals) and an integer k, find a satisfying assignment in which at most k variables are true, if such an assignment exists. Prove that STINGY SAT is NP-complete.


解题思路:要证明一个问题是NP完全问题,可以通过将一个已知的NP完全问题归约到当前问题,对归约的过程有如下限制:规约必须在多项式时间内,并且满足当前问题的解必须也满足已知的NP完全问题,不满足当前问题的解也必须不满足已知的NP完全问题。


关于本题:我选择的已知NP完全问题是SAT问题,将它规约到吝啬SAT问题。

CNF:合取范式,它是一组子句的合取式,并且要求每个子句(即每个括号内的布尔公式)都是多个文字的析取。文字要么为一个布尔变量x,要么为其否定~x(通常表示为x上方加横线)。

SAT问题:给定一个采取合取范式的布尔公式,为其找到一个可满足赋值或判断该赋值不存在

吝啬SAT问题:给定一个采取合取范式的布尔公式,为其找到一个不超过k个变量为真的可满足赋值或判断该赋值不存在。

归约方法:假设SAT问题有n个变量,我们将使n等于k,那么现在的SAT问题的解最多有k个变量为真,等价于吝啬SAT问题。

证明:吝啬SAT问题显然可以在多项式时间内验证一组赋值是否满足问题,因此吝啬SAT是NP问题。由于我们可以通过以上过程将SAT归约到吝啬SAT问题,且归约过程的时间复杂度为O(1),满足在多项式时间内的要求。

  SAT问题的实例是(f,n),f是要求的CNF,n是CNF中的变量总数。当我们设n=k时,问题归约到吝啬SAT问题(f,k)。如果一组解x满足(f,k),由于使f为真,它必然是SAT的解;如果一组解x不满足(f,k),x代表的解中最多有k个为真,由于k=n,现在的SAT问题的解最多也只有k个为真,因此x也不满足SAT问题。


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值