【Havel-Hakimi定理】PKU-1659-Frogs' Neighborhood

原创 2012年03月22日 09:36:59

1,Havel-Hakimi定理主要用来判定一个给定的序列是否是可图的。

2,首先介绍一下度序列:若把图 G 所有顶点的度数排成一个序列 S,则称 S 为图 G 的度序列。

3,一个非负整数组成的有限序列如果是某个无向图的序列,则称该序列是可图的。

4,判定过程:(1)对当前数列排序,使其呈递减,(2)从S【2】开始对其后S【1】个数字-1,(3)一直循环直到当前序列出现负数(即不是可图的情况)或者当前序列全为0 (可图)时退出。

5,举例:序列S:7,7,4,3,3,3,2,1  删除序列S的首项 7 ,对其后的7项每项减1,得到:6,3,2,2,2,1,0,继续删除序列的首项6,对其后的6项每项减1,得到:2,1,1,1,0,-1,到这一步出现了负数,因此该序列是不可图的。

这题是很裸的模板题……

题目

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
struct node
{
    int de,id;
}v[15];
bool cmp(node x,node y)
{
    return x.de>y.de;
}
int main()
{
    //freopen("a.txt","r",stdin);
    int t;int n;
    scanf("%d",&t);
    while(t--)
    {
        int n;
        scanf("%d",&n);
        int de[15];
        for(int i=0;i<n;i++)
        {
            scanf("%d",&v[i].de);
            v[i].id=i;
        }
        int flag=0;
        int map[15][15];
        memset(map,0,sizeof(map));
        for(int i=0;i<n;i++)
        {
            sort(v+i,v+n,cmp);
            for(int j=i+1;j<i+1+v[i].de;j++)
            {
                v[j].de--;
                if(v[j].de<0)
                {
                    flag=1;
                    break;
                }
                map[v[i].id][v[j].id]=map[v[j].id][v[i].id]=1;
            }
            if(flag)break;
        }
        printf("%s\n",flag?"NO":"YES");
        if(!flag)
        {
            for(int i=0;i<n;i++)
            {
                for(int j=0;j<n;j++)
                {
                    if(j)printf(" ");
                    printf("%d",map[i][j]);
                }
                printf("\n");
            }
        }
        printf("\n");
    }
    return 0;
}


Havel-Hakimi定理问题

昨天模拟了一下13年长沙现场赛的题,刚开始不太好,第一题思维有点僵硬,做的有点慢。不过总共做了4题,还算不错,至少是稳铜了,何时能模拟到银呀!第一个水题A是维护后缀最小值,不过要注意等于0的情况。第二...
  • u014355480
  • u014355480
  • 2015年10月08日 15:09
  • 607

图论之Havel-Hakimi定理运用

题目链接 Frogs' Neighborhood Time Limit: 5000MS   Memory Limit: 10000K Total Submissions: 7933  ...
  • qq_18661257
  • qq_18661257
  • 2015年03月05日 20:21
  • 848

Havel-Hakimi定理(判断一个序列是否可图)->POJ1659

Havel-Hakimi定理(判断一个序列是否可图)->POJ1659给定一个非负整数序列{dn},若存在一个无向图使得图中各点的度与此序列一一对应,则称此序列可图化。进一步,若图为简单图,则称此序列...
  • SelinaFelton
  • SelinaFelton
  • 2016年08月02日 00:14
  • 144

POJ1659_Frogs' Neighborhood(判断一个度数序列是否可图/Havel-Hakimi定理)

Frogs' Neighborhood Time Limit: 5000MS   Memory Limit: 10000K Total Submissions: 680...
  • u013320038
  • u013320038
  • 2014年06月02日 17:31
  • 360

度序列(Havel-Hakimi定理)

Problem Description 若把图G所有顶点的度数排成一个序列s,则称s为图G的度序列.例如一个无向图非递减度序列为                                    ...
  • a839964651
  • a839964651
  • 2013年07月06日 14:27
  • 816

Havel-Hakimi定理及其应用

Havel-Hakimi定理及其应用 Havel-Hakimi定理:由非负整数组成的非增序列s:A[0], A[1],.....,A[n](n>=2,A[0]>=1)是可图的,当且仅当序列s1:A[...
  • qdlgdx_lsy
  • qdlgdx_lsy
  • 2013年10月03日 00:02
  • 578

图论(一)度序列与Havel-Hakimi定理

标签:图论 Havel-Hakimi定理 poj1659 原创作品,允许转载,转载时请务必以超链接形式标明文章 原始出处 、作者信息和本声明。否则将追究法律责任。http://sbp81005050...
  • luo964061873
  • luo964061873
  • 2013年04月23日 15:29
  • 541

poj1659 - Frogs' Neighborhood (利用Havel-Hakimi定理判断一个序列是否是可图的)

Frogs' Neighborhood Time Limit: 5000MS   Memory Limit: 10000K Total Submissions: 759...
  • u012727619
  • u012727619
  • 2014年11月16日 14:55
  • 328

Havel-Hakimi定理(判断一个序列是否可图)

Havel定理描述 给定一个非负整数序列{d1,d2,...dn},若存在一个无向图使得图中各点的度与此序列一一对应,则称此序列可图化。进一步,若图为简单图,则称此序列可简单图化。 可图化...
  • riba2534
  • riba2534
  • 2017年07月10日 16:05
  • 258

Havel-Hakimi定理(判断是否可图序列)

给定一个非负整数序列{dn},若存在一个无向图使得图中各点的度与此序列一一对应,则称此序列可图化。进一步,若图为简单图,则称此序列可简单图化 至于能不能根据这个序列构造一个图,就需要根据Have...
  • su20145104009
  • su20145104009
  • 2015年07月17日 17:32
  • 2055
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:【Havel-Hakimi定理】PKU-1659-Frogs' Neighborhood
举报原因:
原因补充:

(最多只允许输入30个字)