关闭

树、森林及二叉树的相互转换 – 数据结构和算法50

标签: 数据结构
614人阅读 评论(0) 收藏 举报
分类:

树、森林及二叉树的相互转换

 

让编程改变世界

Change the world by program


 

树、森林及二叉树的相互转换

 

从一个屌丝逆袭高富帅的小故事说起。

 

在这一章节开始的时候我们是从一棵普通的树开始介绍,在满足树的条件下可以是任意形状,一个结点可以有任意多个孩子,这样对树的处理显然要复杂很多。

 

所以我们研究出了一些条条框框的限定,如:二叉树,完全二叉树,满二叉树等。

那么这时候你就会想,如果所有的树都像二叉树一样方便处理就好了。

 

普通树转换为二叉树

 

步骤如下:

  1. 加线,在所有兄弟结点之间加一条连线。
  2. 去线,对树中每个结点,只保留它与第一孩子结点的连线,删除它与其他孩子结点之间的连线。
  3. 层次调整,以树的根结点为轴心,将整棵树顺时针旋转一定的角度,使之结构层次分明。

 

森林转换为二叉树

 

步骤如下:

  1. 把每棵树转换为二叉树。
  2. 第一棵二叉树不动,从第二棵二叉树开始,依次把后一棵二叉树的根结点作为前一棵二叉树的根结点的右孩子,用线连接起来。

 

二叉树转换为树、森林

 

二叉树转换为普通树是刚才的逆过程,步骤也就是反过来做而已。

判断一棵二叉树能够转换成一棵树还是森林,标准很简单,那就是只要看这棵二叉树的根结点有没有右孩子,有的话就是森林,没有的话就是一棵树。

 

树与森林的遍历

 

树的遍历分为两种方式:一种是先根遍历,另一种是后根遍历。

  • 先根遍历:先访问树的根结点,然后再依次先根遍历根的每棵子树。
  • 后根遍历:先依次遍历每棵子树,然后再访问根结点。

 

No pic you say a J8!

 

先根遍历结果:ABEFCGDHIJ

后根遍历结果:EFBGCHIJDA

 

森林的遍历也分为前序遍历和后序遍历,其实就是按照树的先根遍历和后根遍历依次访问森林的每一棵树。

我们的惊人发现:树、森林的前根(序)遍历和二叉树的前序遍历结果相同,树、森林的后根(序)遍历和二叉树的中序遍历结果相同!

这其实也就证实我们视频开头讲解的那个例子,我们找到了对树和森林遍历这种复杂问题的简单解决方案!

0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:12296次
    • 积分:207
    • 等级:
    • 排名:千里之外
    • 原创:0篇
    • 转载:49篇
    • 译文:0篇
    • 评论:0条
    文章分类
    文章存档