POJ 3329 TSP变形 / floyd预处理+状压DP

原创 2016年06月02日 22:18:56

TSP(旅行商问题):n个点的图,从原点出发,每个点都走且仅走一次,最后回到原点,求最小花费的路径。

动态规划解TSP,要求点的数目一定要小于16。用一个16位的二进制数,每一位1表示走了,0表示没走。16位0、1的所有排列便可以穷尽16个点的所有路径。

由于POJ3329这题没要求每个点只能走一次,所以要先用floyd处理出两个点的最短路径(这样可能会造成有些点走多次)。

dp的思想和实现方法其实与floyd算法非常接近:

dp[i][j]表示 状态为i、终点为j 时的最小代价。

转移方程是 dp[i][j]=min( dp[i][j] , dp[s][k]+dist[k][j])s为i去掉点j后的状态;实际上就是用k点来过渡j点,假设 p是j的前一个点,如果存在p到k、k再到j的总代价比p直接到j的代价小,dp[i][j]就更新为后者。是不是和floyd非常像呢。


知道了这个dp的初始化应该也就明了了,如果一个点i与起点有可达的路径,就应该初始化dp[s][i]=dist[1][i],s为起点直接到i的状态;其余的都为INF。即要对dp[i][j]中当i的状态仅且只有起点和j点的情况赋初值。


网上大部分图中点的编号代码都是从0开始,但却没有解释或者解释不对。从0开始的好处是,因为题目说了,起点是必须要选的;所以可以不用考虑000001这样的情况,直接让0000000也算起点被选了。比如,从第一个点直接到第4个点的状态就是1000,而不用1001;这样做在接下来的操作中可以让代码更好写一点。但是我一开始就是让编号从1开始,也不愿改成1;所以这里还是从1开始。


对于必须要走m个点,也很简单。每次must+=1<<(i-1),i为点编号。m个点化为一串二进制中相应位置上的;比如规定编号1,2,3必须经过;最后must二进制形式就是 1 1 1;将枚举的状态i和must逐位&,如果结果还等于must,就说明i状态的1包含了must,即为可行状态。

一些位运算不再解释,看不懂的可以看我上篇博客

【代码】

/* ***********************************************
Author        :angon
************************************************ */
#include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <stack>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <math.h>
#include <stdlib.h>
#include <time.h>
using namespace std;
#define REP(i,k,n) for(int i=k;i<n;i++)
#define REPP(i,k,n) for(int i=k;i<=n;i++)
#define scan(d) scanf("%d",&d)
#define scann(n,m) scanf("%d%d",&n,&m)
#define mst(a,k)  memset(a,k,sizeof(a));
#define LL long long
#define maxn 1005
#define mod 100000007
/*
inline int read()
{
    int s=0;
    char ch=getchar();
    for(; ch<'0'||ch>'9'; ch=getchar());
    for(; ch>='0'&&ch<='9'; ch=getchar())s=s*10+ch-'0';
    return s;
}
inline void print(int x)
{
    if(!x)return;
    print(x/10);
    putchar(x%10+'0');
}
*/
#define N 16
int a[N],m,n,d;
double mp[N][N],dist[N][N],dp[1<<N][N];

int ct(int x) //计算x中二进制状态1的个数,原理可看我上篇博客
{
    int cnt=0;
    while(x)
    {
        cnt++;
        x&=(x-1);
    }
    return cnt;
}

void floyd()
{
    for(int i=1;i<=n;i++)
        for(int j=1;j<=n;j++)
            dist[i][j]=dist[j][i]=mp[i][j];
    for(int i=1;i<=n;i++)
    {
        for(int j=1;j<=n;j++)
        {
            for(int k=1;k<=n;k++)
            {
                if(dist[i][k]+dist[k][j]<dist[i][j])
                    dist[i][j]=dist[i][k]+dist[k][j];
            }
        }
    }
}
int main()
{
    //freopen("in.txt","r",stdin);
    //freopen("out.txt","w",stdout);
    int x,y,len,kind;
    while(~scanf("%d%d%d",&n,&m,&d) && (n||m||d))
    {
        double t=d*12;
        int must=0;
        for(int i=1;i<=m;i++)
        {
            scan(x);
            must+= 1<<(x-1);
        }
        for(int i=1;i<=n;i++)
            scan(a[i]);
        for(int i=1;i<=n;i++)
        {
            for(int j=1;j<=n;j++)
                mp[i][j]=1000;
            for(int j=1;j<=(1<<n);j++)
                dp[j][i]=1000;
            mp[i][i]=0;
        }
        while(scanf("%d%d%d%d",&x,&y,&len,&kind) &&(x||y||len||kind))
        {
            double h=kind?(len/120.0):(len/80.0);
            if(mp[x][y]>h)   //x,y之间可能既有bus又有火车
                mp[x][y]=mp[y][x]=h;
        }
        floyd();
        dp[1][1]=a[1];
        for(int i=2;i<=n;i++) dp[0][i]=dp[(1<<(i-1))][i]=dist[1][i]+a[i];
        //dp[0][i]也记录起点到i点的代价,之所以加这一句是为了处理下面dp的边界
        int ans=0;
        for(int i=1;i<=(1<<n);i++)
        {
            for(int j=1;j<=n;j++)
            {
                if(i&(1<<(j-1))) //&& i^(1<<(j-1)))  //加这句可以不用初始化dp[0][i],因为直接排序了i去点j点后变成0的可能
                {
                    for(int k=1;k<=n;k++)
                    {
                        if(i&(1<<(k-1)))
                            dp[i][j]=min(dp[i][j],dp[i^(1<<(j-1))][k]+dist[k][j]+a[j]);
                    }
                }
                //if((i&must)==must&& dp[i][j]+dist[j][1]<=t)
                   // ans=max(ans,ct(i));  //这句和下面都可以ac
            }
            if((i&must)==must&&dp[i][1]<=t)
                ans=max(ans,ct(i));
        }
        if(ans)
            printf("%d\n",ans);
        else
            printf("No Solution\n");
    }
    return 0;
}

版权声明:转载请注明出处 http://blog.csdn.net/angon823

相关文章推荐

COdevs 题目2800 送外卖(Floyd+状压DP,TSP裸题)

2800 送外卖  时间限制: 2 s  空间限制: 256000 KB  题目等级 : 钻石 Diamond 题解 ...

poj 2686 Traveling by Stagecoach TSP 图 状压dp

题目 题目链接:http://poj.org/problem?id=2686 题目来源:《挑战》例题。 简要题意:有票子,路程/票面值=代价路程/票面值=代价,求a→ba\to...

POJ 2688 简单的TSP问题,状压DP

题意: 考虑一个被分为 W × H 网格的房间,机器人是矩形的,大小为 1 × 1。房间内的格子被分为干净的,脏的和障碍物三种。机器人不能踏上障碍物,而机器人只要经过一个脏的格子,它就会被清洁成干...

Best Sequence(poj 1699) 状压dp(TSP)

类似于前两天做的那个wordstack。状压的其实有时候爆搜+记忆化也差不多。 就是这个是要与之前的都重合,移位预处理要注意。 理解好第一个样例就行 /* *******************...

POJ3311 Hie with the Pie 【TSP】【状压dp】

题目链接:http://poj.org/problem?id=3311题意: 经典的旅行商问题(TSP),自行google详细信息~~题解: 注意到此时n很小(...

状压DP (Floyd+状态压缩 )——Hie with the Pie( POJ 3311 )

题目链接: http://poj.org/problem?id=3311 分析: 给出n个点,标号从1到n,再给出一个(n+1)*(n+1)大小的矩阵,表示从i到j的花费时间,0代表出发点,从0出...
  • FeBr2
  • FeBr2
  • 2016年08月08日 20:28
  • 141

POJ3311 Hie with the Pie ACM解题报告(Floyd+状压dp)

题意是有N个城市(1~N)和一个PIZZA店(0),要求一条回路,从0出发,又回到0,而且距离最短   也就是TSP(旅行商)问题,首先不难想到用FLOYD先求出任意2点的距离dis[i][j]  ...

POJ 3311 Hie with the Pie(状压DP + Floyd)

POJ 3311 Hie with the Pie(状压DP + Floyd)

poj 3311 Hie with the Pie(floyd + 状压dp)

Hie with the Pie Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 3541 ...
  • WEYuLi
  • WEYuLi
  • 2014年04月06日 16:12
  • 511

POJ 3311 Hie with the Pie floyd+状压DP

链接:http://poj.org/problem?id=3311 题意:有N个地点和一个出发点(N 思路:首先用floyd找到所有点之间的最短路。然后用状态压缩,dp数组一定是二维的,如...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:POJ 3329 TSP变形 / floyd预处理+状压DP
举报原因:
原因补充:

(最多只允许输入30个字)