UVA315 && UVA 796 (求割点和桥,模版)

原创 2016年08月30日 10:57:22

两题的共同之处 输入都很麻烦但是也难不倒我QAQ

另外 第二题 有个trick点,要排序后输出


UVA 315

<span style="font-size:14px;">/* ***********************************************
Author        :angon

************************************************ */
#include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <stack>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <math.h>
#include <stdlib.h>
#include <time.h>
using namespace std;
#define showtime fprintf(stderr,"time = %.15f\n",clock() / (double)CLOCKS_PER_SEC)
#define lld %I64d
#define REP(i,k,n) for(int i=k;i<n;i++)
#define REPP(i,k,n) for(int i=k;i<=n;i++)
#define scan(d) scanf("%d",&d)
#define scanl(d) scanf("%I64d",&d)
#define scann(n,m) scanf("%d%d",&n,&m)
#define scannl(n,m) scanf("%I64d%I64d",&n,&m)
#define mst(a,k)  memset(a,k,sizeof(a))
#define LL long long
#define N 1005
#define mod 1000000007
inline int read()
{
    int s=0;
    char ch=getchar();
    for(; ch<'0'||ch>'9'; ch=getchar());
    for(; ch>='0'&&ch<='9'; ch=getchar())s=s*10+ch-'0';
    return s;
}


/* *  求 无向图的割点和桥
*  可以找出割点和桥,求删掉每个点后增加的连通块。
*  需要注意重边的处理,可以先用矩阵存,再转邻接表,或者进行判重 */
const int MAXN = 10010;
const int MAXM = 100010;
struct Edge
{
    int to,next;
    bool cut;//是否为桥的标记
} edge[MAXM];
int head[MAXN],tot;
int Low[MAXN],DFN[MAXN];
int Index,top,bridge;
bool Instack[MAXN];
bool cut[MAXN];
int add_block[MAXN];//删除一个点后增加的连通块 int bridge;
void addedge(int u,int v)
{
    edge[tot].to = v;
    edge[tot].next = head[u];
    edge[tot].cut = false;
    head[u] = tot++;
}
void Tarjan(int u,int pre)
{
    int v;
    Low[u] = DFN[u] = ++Index;
    Instack[u] = true;
    int son = 0;
    for(int i = head[u]; i != -1; i = edge[i].next)
    {
        v = edge[i].to;
        if(v == pre)continue;
        if( !DFN[v] )
        {
            son++;
            Tarjan(v,u);
            if(Low[u] > Low[v])Low[u] = Low[v];
            //桥
            //一条无向边(u,v)是桥,当且仅当(u,v)为树枝边,且满足DFS(u)<Low(v)。
            if(Low[v] > DFN[u])
            {
                bridge++;
                edge[i].cut = true;
                edge[i^1].cut = true;
            }
            //割点
            //一个顶点u是割点,当且仅当满足(1)或(2) (1) u为树根,且u有多于一个子树。
            //(2) u不为树根,且满足存在(u,v)为树枝边(或称父子边,
            //即u为v在搜索树中的父亲),使得DFS(u)<=Low(v)
            if(u != pre && Low[v] >= DFN[u])//不是树根
            {
                cut[u] = true;
                add_block[u]++;
            }
        }
        else if( Low[u] > DFN[v])              Low[u] = DFN[v];
    }     //树根,分支数大于1
    if(u == pre && son > 1)cut[u] = true;
    if(u == pre)add_block[u] = son - 1;
    Instack[u] = false;
}
void init()
{
    mst(DFN,0);
    mst(head,-1);
    mst(cut,0);
    mst(Instack,0);
    mst(add_block,0);
    tot = Index = bridge = 0;
}
int main()
{
    //freopen("in.txt","r",stdin);
    //freopen("out.txt","w",stdout);
    int n,u,v;
    while(~scan(n) && n)
    {
        init();
        while(~scan(u) && u)
        {
            while(getchar()!='\n')
            {
                scan(v);
                addedge(u,v);
                addedge(v,u);
            }
        }
        for(int i=1; i<=n; i++)
        {
            if(!DFN[i])
                Tarjan(i,i);
        }
        int ans=0;
        for(int i=1; i<=n; i++)
            if(cut[i])
                ans++;
        printf("%d\n",ans);

    }

    return 0;
}</span>

 UVA 796

/* ***********************************************
Author        :angon

************************************************ */
#include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <stack>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <math.h>
#include <stdlib.h>
#include <time.h>
using namespace std;
#define showtime fprintf(stderr,"time = %.15f\n",clock() / (double)CLOCKS_PER_SEC)
#define lld %I64d
#define REP(i,k,n) for(int i=k;i<n;i++)
#define REPP(i,k,n) for(int i=k;i<=n;i++)
#define scan(d) scanf("%d",&d)
#define scanl(d) scanf("%I64d",&d)
#define scann(n,m) scanf("%d%d",&n,&m)
#define scannl(n,m) scanf("%I64d%I64d",&n,&m)
#define mst(a,k)  memset(a,k,sizeof(a))
#define LL long long
#define N 1005
#define mod 1000000007
inline int read(){int s=0;char ch=getchar();for(; ch<'0'||ch>'9'; ch=getchar());for(; ch>='0'&&ch<='9'; ch=getchar())s=s*10+ch-'0';return s;}


const int MAXN = 100010;
const int MAXM = 1000010;
struct Edge
{
    int to,next;
    bool cut;//是否为桥的标记
} edge[MAXM];
int head[MAXN],tot;
int Low[MAXN],DFN[MAXN];
int Index,top,bridge;
bool Instack[MAXN];
bool cut[MAXN];
int add_block[MAXN];//删除一个点后增加的连通块 int bridge;
void addedge(int u,int v)
{
    edge[tot].to = v;
    edge[tot].next = head[u];
    edge[tot].cut = false;
    head[u] = tot++;
}
struct T
{
    int u, v;
}t[MAXM];
void Tarjan(int u,int pre)
{
    int v;
    Low[u] = DFN[u] = ++Index;
    Instack[u] = true;
    int son = 0;
    for(int i = head[u]; i != -1; i = edge[i].next)
    {
        v = edge[i].to;
        if(v == pre)continue;
        if( !DFN[v] )
        {
            son++;
            Tarjan(v,u);
            if(Low[u] > Low[v])Low[u] = Low[v];
            //桥
            //一条无向边(u,v)是桥,当且仅当(u,v)为树枝边,且满足DFS(u)<Low(v)。
            if(Low[v] > DFN[u])
            {
                t[++bridge].u=u;
                t[bridge].v=v;
                if(t[bridge].u>t[bridge].v) swap(t[bridge].u,t[bridge].v);
                //edge[i].cut = true;
                //edge[i^1].cut = true;
            }
        }
        else if( Low[u] > DFN[v])   Low[u] = DFN[v];
    }
    Instack[u] = false;
}
void init()
{
    mst(DFN,0);
    mst(head,-1);
    mst(cut,0);
    mst(Instack,0);
    mst(add_block,0);
    tot = Index = bridge = 0;
}
bool cmp(T a, T b)
{
    return a.u<b.u || a.u==b.u&&a.v<b.v;
}
int main()
{
    //freopen("in.txt","r",stdin);
    //freopen("out.txt","w",stdout);
    int n,u,v,k;
    while(~scan(n) )
    {
        init();
        for(int i=0;i<n;i++)
        {
            scan(u); u++;
            scanf(" (%d)",&k);
            while(k--)
            {
                scan(v); v++;
                addedge(u,v);
                addedge(v,u);
            }
        }
        for(int i=1; i<=n; i++)
        {
            if(!DFN[i])
                Tarjan(i,i);
        }
        printf("%d critical links\n",bridge);
        sort(t+1,t+bridge+1,cmp);
        for(int i=1;i<=bridge;i++)
            printf("%d - %d\n",t[i].u-1,t[i].v-1);
        printf("\n");
    }
    return 0;
}


版权声明:转载请注明出处 http://blog.csdn.net/angon823

相关文章推荐

Network - UVA 315 - 无向图求割点

链接:  https://cn.vjudge.net/problem/UVA-315题目:DescriptionA Telephone Line Company (TLC) is establishi...

uva315 Network 【tarjan-求割点】

**uva Network** Description A Telephone Line Company (TLC) is establishing a new telephone cable n...

POJ 1144 & Uva 315 Network 【求割点数目】

Network Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 10855   Accep...

UVA 315 Network 求割点、套版题 求割点

求割点的个数 套一个求割点和桥模板 然后注意一下边的读入 因为每行不确定多少个数字, 所以用getline() 然后用 isalnum() 来判断是数字还是空格 此外注意这里val < 100, 所以...

UVA315-Network(求割点个数,模板题)||tarjan

这个就是很裸的求割点的个数 关于割点什么的可以参考:http://blog.csdn.net/idrandom/article/details/52173817#include #include #...

poj_1144/uva_315/zoj_1311 Network(割點模板題)

求割點的模板題,要求

UVA796Critical Links(求桥)(tarjan模板题)

题目链接:UVA796Critical Links 给你一个无向图,让你把桥边输出 1.这图不一定连通。 2.边按字典序输出#include #include #include #include...

UVA 796 Critical Links(求桥)

求 无向图的割点和桥 可以找出割点和桥,求删掉每个点后增加的连通块。 需要注意重边的处理,可以先用矩阵存,再转邻接表,或者进行判重#include #include #include #inclu...

uva315 Network 【图论-tarjan-求桥】

Description In a computer network a link L, which interconnects two servers, is considered critical...

POJ 1144 && UVA 315 ——无向连通图求割顶

Network Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 8111   Accept...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)