系统学习机器学习之神经网络(九) --Hopfield网络

转自:http://blog.csdn.net/lg1259156776/article/details/47323889

一、前言

经过一段时间的积累,对于神经网络,已经基本掌握了感知器、BP算法及其改进、AdaLine等最为简单和基础的前馈型神经网络知识,下面开启的是基于反馈型的神经网络Hopfiled神经网络。前馈型神经网络通过引入隐层及非线性转移函数(激活函数)使得网络具有复杂的非线性映射能力。前馈网络的输出仅由当前输入和权矩阵决定,而与网络先前的输出状态无关。J.J. Hopfield教授在反馈神经网络中引入了能量函数的概念,使得反馈型神经网络运行稳定性的判断有了可靠依据,1985年Hopfield和Tank共同用模拟电子线路实现了Hopfield网,并成功的求解了优化组合问题中最具有代表性的旅行商TSP问题,从而开辟了神经网络用于智能信息处理的新途径。

前馈网络中,不论是离散还是连续,一般都不考虑输入和输出之间在时间上的滞后性,而只是表达两者间的映射关系,但在Hopfield网络中,需考虑输入输出间的延迟因素,因此需要通过微分方程或差分方程描述网络的动态数学模型。

神经网络的学习方式包括三种:监督学习、非监督学习、灌输式学习。对于Hopfield网络的权值不是经过反复学习获得的,而是按照一定的实现规则计算出来,在改变的是网络的状态,直到网络状态稳定时输出的就是问题的解。

Hopfield网络分为连续性和离散型,分别记为CHNN和DHNN。这里主要讲解DHNN。

二、DHNN

1. 网络结构与工作方式

DHNN的特点是任一神经元的输出xi均通过链接权wij反馈至所有神经元xj作为输入,目的是为了让输出能够受到所有神经元的输出的控制,从而使得各个神经元的输出相互制约。每个神经元均设有一个阈值Tj,以反映对输入噪声的控制。DHNN可简记为N=(W,T)。

(1) 网络的状态

所有神经元的状态集合构成了反馈网络状态X=(x1,x2,x3,...,xn),反馈网络的输入就是网络的状态初始值,X(0) = (x1(0),x2(0),x3(0),...,xn(0))。反馈网络在外界输入的激发下,从初始状态进入动态演变过程,其间每个神经元的状态不断变化,变化规律为:xj = f(net-j),f为转移函数,常采用符号函数,则神经元j的净输入net-j = sum(wji*xi - Tj),对于DHNN网,一般有wii = 0, wji= wij。即权矩阵的对角线元素为0,且为对阵矩阵。表示神经元i的输出不反馈到神经元i,而是反馈到神经元i以外的所有神经元的输入端。

反馈网络稳定时每个神经元的状态都不再改变,即X(t) = X(t+1) = ... = X(∞)。

(2) 网络的异步工作方式

串行,网络每次只对一个神经元的状态进行调整计算,其他均不变。这样调整的顺序就有一定的影响了。可以随机选定或者按照固定的顺序。本次调整的结果会在下一个神经元的净输入中发挥作用。

(3) 网络的同步工作方式

并行,所有神经元同时进行状态调整计算。

2. 网络的稳定性与吸引子

(1) 稳定性

反馈网络是一种能够存储若干预先设置的稳定点的网络,作为非线性动力学系统,具有丰富的动态特性,如稳定性、有限环状态和混沌状态等;

稳定性指的是经过有限次的递归后,状态不再发生改变;

有限环状态指的是限幅的自持震荡;

混沌状态指的是网络状态的轨迹在某个确定的范围内变迁,既不重复也不停止,状态变化无穷多个,轨迹也不发散到无穷远。

对于DHNN,由于网络状态是有限的,不可能出现混沌状态。

利用Hopfield网络可实现联想记忆功能:用网络的稳态表示一种记忆模式,初始状态朝着稳态收敛的过程便是网络寻找记忆模式的过程,初态可视为记忆模式的部分信息,网络演变可视为从部分信息回忆起全部信息的过程,从而实现联想记忆。

可实现优化求解问题:将带求解问的目标函数设置为网络能量函数,当能量函数趋于最小时,网络状态的输出就是问题的最优解。网络的初态视为问题的初始解,而网络从初始状态向稳态的收敛过程便是优化计算过程,这种寻优搜索是在网络演变过程中自动完成的。

(2) 吸引子与能量函数

网络的稳定状态X就是网络的吸引子,用于存储记忆信息。网络的演变过程就是从部分信息寻找全部信息,即联想回忆过程。吸引子有以下的性质:

X=f(WX-T),则X为网络的吸引子;

对于DHNN,若按异步方式调整,且权矩阵W为对称,则对于任意初态,网络都最终收敛到一个吸引子;

对于DHNN,若按同步方式调整,且权矩阵W为非负定对称,则对于任意初态,网络都最终收敛到一个吸引子;

X为网络吸引子,且阈值T=0,在sign(0)处,xj(t+1) = xj(t),则-X也一定是该网络的吸引子;

吸引子的线性组合,也是吸引子;

能使网络稳定在同一吸引子的所有初态的集合,称为该吸引子的吸引域;

对于异步方式,若存在一个调整次序,使网络可以从状态X演变为Xa,则称X弱吸引到Xa;若对于任意调整次序,网络都可以从X演变为Xa,则称X强吸引到Xa。则对应弱吸引域和强吸引域。

若使反馈网络具有联想能力,每个吸引子都应该具有一定的吸引域,只有这样,对于带有一定噪声或缺损的初始样本,网络才能经过动态演变而稳定到某一个吸引子状态,从而实现正确联想。反馈网络设计的目的就是要使网络能落到期望的稳定点上,并且还要具有尽可能大的吸引域,以增强联想功能。

3. 网络的权值设计

吸引子的分布是由网络权值包括阈值决定的,设计吸引子的核心就是如何设计一组合适的权值,为了使得所设计的权值满足要求,权值矩阵应符合以下要求:

(1) 为保证异步方式网络收敛,W为对称矩阵;

(2) 为保证同步方式网络收敛,W为非负定对称矩阵;

(3) 保证给定的样本是网络的吸引子,并且要有一定的吸引域。

根据应用所要求的吸引子数量,可以采用以下不同的方法:

(1) 联立方程法

对于吸引子较少时,可采用该方法。

(2) 外积和法

对于吸引子较多时,可采用该方法。采用Hebb规律的外积和法。

补充:

根据其提出者,John Joseph Hopfield 命名。Hopfield 在 1982 年提出的划时代的:Neural networks and physical systems with emergent collective computational abilities 一文。顾名思义,从论文的名字中我们就可看出,Hopfield 神经网络是将物理学的相关思想(动力学)引入到神经网络的构造当中,事实上,Hopfield 本人正是一位物理学家。

1. DHNN

  • DHNN,Discrete Hopfield Neural Networks,存在离散型 HNN,自然也少不了 CHNN,Continuous HNN,连续型网络。



  • 从其对应的网状结构可以清晰地看出,DHNN 和其他神经网络不同的是,DHNN 并没有层(Layer)的概念,也没有前向和后向的区别。
  • bi ,称为每一个神经元(neuron)的门槛值,因为最终是要用加权值和减去该值,又可称其为截断值

2. 两个定理

吸引子(attractor): X=f(WXT) X 既是输入也是输出,即表明达到稳态;

  • 定理之一:对于 DHNN 网,若按异步方式调整网络状态,且连接矩阵 W 为对称阵,则对于任意初态,网络都最终收敛到一个吸引子;

    此时我们引入能量函数(energy function)的定义,

    E(t)=12XT(t)WX(t)+XT(t)T

    令能量函数的改变量为 ΔE ,网络状态的改变量为 ΔX ,则有:

    ΔE(t)=E(t+1)E(t)ΔX(t)=X(t+1)X(t)

    将相关变量的定义代入进 ΔE(t) ,可得:

    ΔE(t)=12[X(t)+ΔX(t)]TW[X(t)+ΔX(t)]+(X(t)+ΔX(t))TTE(t)=ΔXT[WXT]12ΔXTWΔX

    由于该定理是规定按照异步工作方式,第 t 个时刻只有一个神经元调整状态,

参考资料:

韩力群,人工神经网络教程,北京邮电大学出版社,2006年12月

  • 3
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值