关闭

矩阵连乘问题

标签: 矩阵连乘问题动态规划
77人阅读 评论(0) 收藏 举报
分类:

题目描述:给定n个矩阵{A1,A2,…,An},其中Ai与Ai+1是可乘的,i=1,2 ,…,n-1。如何确定计算矩阵连乘积的计算次序,使得依此次序计算矩阵连乘积需要的数乘次数最少。例如:

  A1={30x35} ; A2={35x15} ;A3={15x5} ;A4={5x10} ;A5={10x20} ;A6={20x25} ;

最后的结果为:((A1(A2A3))((A4A5)A6))  最小的乘次为15125。

解题公式:

/*
从连乘矩阵个数为2开始计算每次的最小乘次数m[i][j]: m[0][1] m[1][2] m[2][3] m[3][4] m[4][5]  
//m[0][1]表示第一个矩阵与第二个矩阵的最小乘次数,然后再计算再依次计算
					连乘矩阵个数为3:m[0][2] m[1][3] m[2][4] m[3][5]

           连乘矩阵个数为4:m[0][3] m[1][4] m[2][5]

          连乘矩阵个数为5:m[0][4] m[1][5]

          连乘矩阵个数为6:m[0][5]    //即最后我们要的结果
*/
#include<stdio.h>
#define N 6
int p[N+1]={30,35,15,5,10,20,25};

int trace(int a[N]){

	int m[N][N];
	int i,j;

	for(i=0;i<N;i++)   //单一矩阵的最小乘次都置为0
		m[i][i]=0;

	for(int c=2;c<=N;c++){  //m为连乘矩阵的个数
		for(i=0;i<=N-c;i++){ //i表示连乘矩阵中的第一个
  
			j = i+c-1;      //j表示连乘矩阵中的最后一个
			m[i][j] = 1000000;

			for(int k=i;k<j;k++){  //在第一个与最后一个之间寻找最合适的断开点,注意,这是从i开始,即要先计算两个单独矩阵相乘的乘次

				int t = m[i][k]+m[k+1][j]+p[i]*p[j+1]*p[k+1];

				if(t<m[i][j])
					m[i][j] = t;
			}
		}
	}

	return m[0][N-1];

}

int main()
{
	printf("%d\n",trace(p));
	
	return 0;
}


0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:4816次
    • 积分:370
    • 等级:
    • 排名:千里之外
    • 原创:32篇
    • 转载:1篇
    • 译文:1篇
    • 评论:0条