【第22期】观点:IT 行业加班,到底有没有价值?

动态规划:钢条切割问题实现

原创 2015年11月18日 22:24:43

钢条切割问题是这样的:

一段钢条可以被切割成若干长度不一的更短的钢条,给定一个价目表,问如何切割收益最大。其中价目表包括了长度为从i=1到i=n的钢条分别的价格Pi。比如P1=1,P2=5表示长度为1的钢条的价值为1,长度为2的钢条的价值为5。


这是一个典型的动态规划问题。

第一种方法是自顶向下的方法,假定我们已经知道了长度为K的钢条的最大收益,然后通过这个最大收益求解长度为K+1的钢条的最大收益。因此我们递归地定义了钢条的最大收益。虽然思想是由小求大,但是实际程序需要我们由顶向下求解。代码如下:

#include <iostream>
#include <stdio.h>
#include <memory.h>
#define N 100
int prices[N];              //长度为n的钢条的价格
int r[N];                   //长度为n时的最大收益
int cut_rod(int n);         //求最大收益
int answer[N];              //保存切割位置

int main()
{
    int n;
    while(1 == scanf("%d", &n))
    {
        memset(answer, 0, sizeof(answer));
        memset(r, -1, sizeof(r));
        for(int i = 1; i <= n; ++i)
            scanf("%d", &prices[i]);

        printf("%d\n", cut_rod(n));
    }
    return 0;
}

/* 自顶向下的递归求解算法 */
int cut_rod(int n)
{
    if(r[n] > 0)    //如果已经算过,直接返回
        return r[n];
    int temp = -1;
    if(0 == n)      //长度为0的钢条价格为0
        temp = 0;
    //下面的循环递归求解长度为n的钢条的最大收益
    for(int i = 1; i <= n; ++i)
    {
        int x = prices[i] + cut_rod(n - i);
        if(x > temp)
            temp = x;
    }
    r[n] = temp;
    return temp;
}
这种方法可以求得最大收益,但是构建最优切割方案是个麻烦的事情,所以还有一种非递归的方法,在求解最优子问题的同时,逐步构建了最优方案。


这种非递归的方法的思想和上面的思想相同,即由短求长,但是采用了非递归的方法。代码如下:

#include <iostream>
#include <stdio.h>
#include <memory.h>
#define N 100
int prices[N];                          //长度为n的钢条的价格
int r[N];                               //长度为n时的最大收益
int cut_rod_bottom_up(int n);           //求最大收益
int answer[N];                          //保存切割位置

int main()
{
    int n;
    while(1 == scanf("%d", &n))
    {
        memset(answer, 0, sizeof(answer));
        memset(r, -1, sizeof(r));
        for(int i = 1; i <= n; ++i)
            scanf("%d", &prices[i]);

        printf("%d\nBest Cut:", cut_rod_bottom_up(n));
        int x = 0;
        //输出最优方案的切割位置
        while(n > 0)
        {
            x += answer[n];
            printf("%d ", x);
            n = n - answer[n];
        }
        printf("\n");
    }
    return 0;
}
/* 自底向上的非递归求解算法 */
int cut_rod_bottom_up(int n)
{
    r[0] = 0;
    for(int i = 1; i <= n; ++i)
    {
        int x = 0;
        //下面的循环,求解长度为i的钢条的最大收益
        for(int j = 1; j <= i; ++j)
        {
            if(prices[j] + r[i-j] > x)
            {
                x = prices[j] + r[i-j];
                answer[i] = j;              //存储长度为i的钢条的左边的第一个切割位置
            }
        }
        r[i] = x;   //储存长度为i的钢条的最佳收益
    }
    return r[n];
}



版权声明:本文为博主原创文章,未经博主允许不得转载。 举报

相关文章推荐

Python实现动态规划切割钢条问题

该题目来自《算法导论》书中动态规划一章的实例,书上用的是伪代码实现。 切割钢条问题的描述: http://www.cnblogs.com/mengwang024/p/4342796.html 以下是...

ACM最长公共子序列问题(动态规划)C++实现

// 最长公共子序列问题.cpp : Defines the entry point for the console application. //动态规划问题 对于X=x1x2...xm, Y=y1y2...yn的最长公共子序列Z=z1z2...zk 1)、如果xm=yn,那么zk=xm=y...

程序员升职加薪指南!还缺一个“证”!

CSDN出品,立即查看!

动态规划与钢条切割问题 C++实现

动态规划一、原理我们可以用拉格朗日乘数法,求解给定条件下的方程最优解,同样,动态规划算法也是用于在一定条件下的求解最优解的方法。它和分治方法很相似,都是通过组合子问题来求解原问题。一般适用于动态规划算...

算法设计与分析--求最大子段和问题(蛮力法、分治法、动态规划法) C++实现

算法设计与分析--求最大子段和问题 问题描述: <span style="font-family: FangSong_G
  • bcyy
  • bcyy
  • 2013-05-13 20:43
  • 584

算法导论-第15章-动态规划-15.1 钢条切割问题

一、综述 动态规划是通过组合子问题的解而解决整个问题的。 动态规划适用于子问题不是独立的情况,也就是各子问题的包含公共的子子问题。 动态规划对每个子问题只求解一次,将其结果保存在一张表中。 动...
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)