华为OJ(笔画)

原创 2016年08月29日 23:11:20


描述

一笔画游戏是一个数学游戏  即平面上由多条线段构成的一个图形能不能一笔画成,使得在每条线段上都不重复?例如汉字‘日’和‘中’字都可以一笔画的,而‘田’和‘目’则不能。

请编程实现一笔画:

首先输入坐标系上的点数个数,然后输入点的坐标,请判断这张图是否可以一笔画出,并输出画线顺序 (每条线段必须经过一次,且只能经过一次。每个端点可以经过多次。)

当有多种方式可以完成一笔画时,每一步都必须尽可能先画数值最小的端点。

如  输入 1,2  1,3 2,3 三个点

画线顺序为:1 2 3 1

如果能画线输出true

其他输出false;

知识点 链表,队列,栈,树,图,数组
运行时间限制 10M
内存限制 128
输入

1、输入点的个数

2、输入点的坐标

输出

如果可以一笔画这输出 画线顺序


样例输入 3 1 2 1 3 2 3
样例输出 true
看OJ下面的评论都说这个题描述是错误的,用的思路:

欧拉定理   如果一个网络是连通的并且奇顶点的个数等于0或2,那么它可以一笔画出;否则它不可以一笔画出。
 
判断一笔画的方法: 
①是连通的。一个图,如果图上任意二点总有线段连接着,就称为连通的。不是连通的就不能一笔画出。
 
②奇点个数是0或者是2。图上线段的端点可以分成二类,奇点和偶数。一个点,以它为端点的线段数是奇数就称为奇点,线段数是偶数就称为偶点。

package easy;

import java.util.*;

public class bihua {
    public static void main(String[] args){
        Scanner sc = new Scanner(System.in);
        while(sc.hasNext()){
        	int N = sc.nextInt();
        	int[][] A = new int[2][N]; 
        	for(int i=0;i<N;i++){
        		A[0][i] = sc.nextInt();
        		A[1][i] = sc.nextInt();
        	}
        	System.out.println(isYibihua(N,A));
        }
    }

	private static boolean isYibihua(int n, int[][] A) {
		// TODO Auto-generated method stub
		Set<Integer> nodeset = new TreeSet<Integer>();
		for(int i=0;i<n;i++){
			nodeset.add(A[0][i]);
			nodeset.add(A[1][i]);
		}
		
		List<Integer> node = new ArrayList<Integer>();
		
		for(int e:nodeset){
			node.add(e);
		}
		
		int[][] M = new int[node.size()][node.size()];
		for(int i=0;i<n;i++){
			int e1 = A[0][i];
			int e2 = A[1][i];
			M[node.indexOf(e1)][node.indexOf(e2)]=1;
			M[node.indexOf(e2)][node.indexOf(e1)]=1;
		}
			
		return isDFS(M)&&isQidian(M);
	}
	
	private static boolean isDFS(int[][] m){
		
		int[] visit = new int[m.length];
		
		Queue<Integer> queue = new LinkedList<Integer>();
		
		visit[0]=1;
		queue.add(0);
		
		while(queue.size()>0){
			int t = queue.poll();
			for(int i=0;i<m.length;i++){
				if(m[t][i]==1&&visit[i]!=1){
					queue.offer(i);
					visit[i]=1;
				}
			}
		}
		
		for(int i=0;i<visit.length;i++){
			if(visit[i]!=1)
				return false;
		}
		
		return true;
	}
	
	private static boolean isQidian(int[][] M) {
		int[] side = new int[M.length];
		
		for(int i=0;i<M.length;i++){
			for(int j=0;j<M.length;j++){
				if(M[i][j]==1)
					side[i]++;
			}
		}
		
		int count=0;
		for(int i=0;i<side.length;i++){
			if(side[i]%2!=0)
				count++;
		}
		
		if(count==0||count==2)
			return true;
		else
			return false;
	}
}


华为OJ(笔画)

描述 一笔画游戏是一个数学游戏  即平面上由多条线段构成的一个图形能不能一笔画成,使得在每条线段上都不重复?例如汉字‘日’和‘中’字都可以一笔画的,而‘田’和‘目’则不能。请编程实现一笔画:首先输入...
  • yiqiwangxi
  • yiqiwangxi
  • 2015年08月26日 22:13
  • 1603

华为oj 笔画

看到这道题我激动了,我靠,不得不发自内心的说一句,华为的选题还是挺好的,这道题很有趣,需要两步判断 1.判断整幅图是不是联通的 2.判断这个这个连通图是否是欧拉回路 对于第一个问题,并查集就是为...
  • grace_fool
  • grace_fool
  • 2016年08月28日 12:25
  • 465

一笔画问题-判断连通性+欧拉图

[原题链接](http://acm.nyist.net/JudgeOnline/problem.php?pid=42) #include #include #include #include ...
  • qq_33132383
  • qq_33132383
  • 2016年12月04日 20:24
  • 534

一笔画问题(并查集+无向欧拉图)

一笔画问题 时间限制:3000 ms  |  内存限制:65535 KB 难度:4 描述 zyc从小就比较喜欢玩一些小游戏,其中就包括画一笔画,他想请你帮他写一个程序,...
  • baidu_23955875
  • baidu_23955875
  • 2015年07月10日 16:21
  • 565

欧拉路径(一笔画问题)

定理一 连通的无向图有欧拉路径的充要条件是: G中奇顶点(连接的边数量为奇数的顶点)的数目等于0或者2。 连通的无向图是欧拉环(存在欧拉回路)的充要条件是: G中每个顶点的度都是偶数。 定理...
  • qq_15015129
  • qq_15015129
  • 2016年11月02日 14:31
  • 2884

nyoj_42 一笔画问题

一笔画问题 时间限制:3000 ms  |  内存限制:65535 KB 难度:4 描述 zyc从小就比较喜欢玩一些小游戏,其中就包括画一笔画,他想请你帮他写一个程序,判断一个图是否能够用...
  • F010011100000
  • F010011100000
  • 2016年05月02日 20:07
  • 615

图论算法---- 一笔画问题(欧拉路)

一、题目描述 题目描述 对给定的一个无向图,判断能否一笔画出。若能,输出一笔画的先后顺序,否则输出“No Solution!” 所谓一笔画出,即每条边仅走一次,每个顶点可以多次经过。 输出字典...
  • C20180602_csq
  • C20180602_csq
  • 2016年10月10日 12:58
  • 2297

对一道面试题的总结与扩展思考(关于一笔画问题的数学分析)

摘要 前几天参加了一个公司的面试,其中被问到了一个题。面试官在纸上画了一个图形(具体图形见下文),问我能不能一笔画出这个图形,要求每条边必须只走一次,并且画的过程中笔不能离开纸。当时我没有试着去...
  • dolphin98629
  • dolphin98629
  • 2015年02月07日 10:54
  • 549

一笔画问题 连通图(搜索+队列)

一笔画问题 时间限制:3000 ms  |  内存限制:65535 KB 难度:4 描述 zyc从小就比较喜欢玩一些小游戏,其中就包括画一笔画,他想请你帮他写一个程序,...
  • judyge
  • judyge
  • 2015年04月13日 10:31
  • 439

【原创】一笔画问题(欧拉路)

一笔画问题(euler-circuit.cpp) 题目描述 对给定的一个无向图,判断能否一笔画出。若能,输出一笔画的先后顺序,否则输出“No Solution!” 所谓一笔画出,即每条边仅走一次,每个...
  • c20182030
  • c20182030
  • 2016年10月08日 13:37
  • 855
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:华为OJ(笔画)
举报原因:
原因补充:

(最多只允许输入30个字)