动态规划小结

原创 2016年05月31日 09:05:27
1.最长上升子序列问题:


给出一个由n个数组成的序列x[1..n],找出它的最长单调上升子序列。即求最大的m和a1,

a2……,am,使得a1<a2<……<am且x[a1]<x[a2]<……<x[am]。

2.动态规划求解思路分析:(O(n^2))


经典的O(n^2)的动态规划算法,设A[i]表示序列中的第i个数,F[i]表示从1到i这一段中以i结尾的最长上升子序列的长度,初始时设F[i] = 0(i = 1, 2, ..., len(A))。则有动态规划方程:F[i] = max{1, F[j] + 1} (j = 1, 2, ..., i - 1, 且A[j] < A[i])。

3.(1) n条直线最多分平面问题
    题目大致如:n条直线,最多可以把平面分为多少个区域。
    析:可能你以前就见过这题目,这充其量是一道初中的思考题。
但一个类型的题目还是从简单的入手,才容易发现规律。当有n-1条直线时,
平面最多被分成了f(n-1)个区域。则第n条直线要是切成的区域数最多,
就必须与每条直线相交且不能有同一交点。这样就会得到n-1个交点。
这些交点将第n条直线分为2条射线和n-2条线断。而每条射线和线断将以
有的区域一分为二。这样就多出了2+(n-2)个区域。
        故:f(n)=f(n-1)+n=f(n-2)+(n-1)+n
                      ……
                         =f(1)+1+2+……+n
                         =n(n+1)/2+1
(2) 折线分平面(hdu2050)
    根据直线分平面可知,由交点决定了射线和线段的条数,进而决定了新增的区域数。
当n-1条折线时,区域数为f(n-1)。为了使增加的区域最多,则折线的两边的线段
要和n-1条折线的边,即2*(n-1)条线段相交。那么新增的线段数为4*(n-1),
射线数为2。但要注意的是,折线本身相邻的两线段只能增加一个区域。
       故:f(n)=f(n-1)+4(n-1)+2-1=f(n-1)+4(n-1)+1
                                 =f(n-2)+4(n-2)+4(n-1)+2
                                   ……
                                 =f(1)+4+4*2+……+4(n-1)+(n-1)   
                                 =2n^2-n+1
(3) 封闭曲线分平面问题
题目大致如设有n条封闭曲线画在平面上,而任何两条封闭曲线恰好相交于两点,
且任何三条封闭曲线不相交于同一点,问这些封闭曲线把平面分割成的区域个数。
析:当n-1个圆时,区域数为f(n-1).那么第n个圆就必须与前n-1个圆相交,
则第n个圆被分为2(n-1)段线段,增加了2(n-1)个区域。
        故: f(n)=f(n-1)+2(n-1)=f(1)+2+4+……+2(n-1)
                               =n^2-n+2
(4)平面分割空间问题(hdu1290)
由二维的分割问题可知,平面分割与线之间的交点有关,即交点决定射线和线段的条数,
从而决定新增的区域数。试想在三维中则是否与平面的交线有关呢?当有n-1个平面时,
分割的空间数为f(n-1)。要有最多的空间数,则第n个平面需与前n-1个平面相交,
且不能有共同的交线。即最多有n-1 条交线。而这n-1条交线把第n个平面最多分割成
g(n-1)个区域。(g(n)为(1)中的直线分平面的个数)此平面将原有的空间一分
为二,则最多增加g(n-1)个空间。
        故:f=f(n-1)+g(n-1)    ps:g(n)=n(n+1)/2+1
                   =f(n-2)+g(n-2)+g(n-1)
                   ……
                  =f(1)+g(1)+g(2)+……+g(n-1)
                  =2+(1*2+2*3+3*4+……+(n-1)n)/2+(n-1)
                  =(1+2^2+3^2+4^2+……+n^2-1-2-3-……-n )/2+n+1
                  =(n^3+5n)/6+1

感觉不错的:一,最大子序列、最长递增子序列、最长公共子串、最长公共子序列、字符串编辑距离 - Orisun - 博客园
http://www.cnblogs.com/zhangchaoyang/articles/2012070.html

二,一个显示排序过程的Python脚本 | 酷 壳 - CoolShell.cn
http://coolshell.cn/articles/536.html


版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

LCS 经典题及变式的小结【动态规划】

LCS 是最大公共子串的意思。首先来一道最简单的LCS题,即求两个字符串的LCS长度 //toj1683 LCS 最长公共子序列 #include #include using names...

hdu - 动态规划 入门小结 - Bone Collector - 2191 - 重温世界杯 1422

一: 01背包简单题 Bone Collector Bone Collector Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 3...
  • FXXKI
  • FXXKI
  • 2014-12-07 21:28
  • 461

0-1背包问题入门小结 动态规划(DP)经典题目 POJ324 POJ1276

最近在做背包问题,今天写点东西总结一下。         背包问题,常见的有三种类型:基本的0-1背包、完全背包和多重背包、二维背包        ...

0-1背包问题入门小结 动态规划(DP)经典题目 POJ324 POJ1276

最近在做背包问题,今天写点东西总结一下。         背包问题,常见的有三种类型:基本的0-1背包、完全背包和多重背包、二维背包        ...

算法导论小结(8)-动态规划与贪心算法

By:             潘云登 Date:          ...

算法小结--动态规划(二)

通过实例,我们已经了解到动态规划的求解方法,DP算法采用分治算法的思想,将原问题分为若干个子问题,然后分别求解各个子问题,最后将子问题组合起来得到原问题的解。动态规划的高明之处是不会重复求解某些出现过...

动态规划小结——背包问题

背包问题是动态规划的经典问题,因此,有必要弄清跟背包问题的所有分析过程并熟练掌握各种类型的代码 一,完全背包问题 1.问题描述:有n种物品,每种物品有无限多个,第i个物品重量是wi,价值是vi,从这些...

动态规划专题小结:最长上升子序列(LIS)问题

(1)问题描述:给定n个整数A1,A2,A3...An。按照从左往右的顺序选择尽可能多的整数,组成一个上升子序列,其中相邻元素不能相等。 (2)解题思路:本题就是经典的最长上升子序列问题(Longes...

算法之动态规划

逐时段摄动动态规划poa

  • 2015-11-28 14:49
  • 32KB
  • 下载
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)