动态规划小结

原创 2016年05月31日 09:05:27
1.最长上升子序列问题:


给出一个由n个数组成的序列x[1..n],找出它的最长单调上升子序列。即求最大的m和a1,

a2……,am,使得a1<a2<……<am且x[a1]<x[a2]<……<x[am]。

2.动态规划求解思路分析:(O(n^2))


经典的O(n^2)的动态规划算法,设A[i]表示序列中的第i个数,F[i]表示从1到i这一段中以i结尾的最长上升子序列的长度,初始时设F[i] = 0(i = 1, 2, ..., len(A))。则有动态规划方程:F[i] = max{1, F[j] + 1} (j = 1, 2, ..., i - 1, 且A[j] < A[i])。

3.(1) n条直线最多分平面问题
    题目大致如:n条直线,最多可以把平面分为多少个区域。
    析:可能你以前就见过这题目,这充其量是一道初中的思考题。
但一个类型的题目还是从简单的入手,才容易发现规律。当有n-1条直线时,
平面最多被分成了f(n-1)个区域。则第n条直线要是切成的区域数最多,
就必须与每条直线相交且不能有同一交点。这样就会得到n-1个交点。
这些交点将第n条直线分为2条射线和n-2条线断。而每条射线和线断将以
有的区域一分为二。这样就多出了2+(n-2)个区域。
        故:f(n)=f(n-1)+n=f(n-2)+(n-1)+n
                      ……
                         =f(1)+1+2+……+n
                         =n(n+1)/2+1
(2) 折线分平面(hdu2050)
    根据直线分平面可知,由交点决定了射线和线段的条数,进而决定了新增的区域数。
当n-1条折线时,区域数为f(n-1)。为了使增加的区域最多,则折线的两边的线段
要和n-1条折线的边,即2*(n-1)条线段相交。那么新增的线段数为4*(n-1),
射线数为2。但要注意的是,折线本身相邻的两线段只能增加一个区域。
       故:f(n)=f(n-1)+4(n-1)+2-1=f(n-1)+4(n-1)+1
                                 =f(n-2)+4(n-2)+4(n-1)+2
                                   ……
                                 =f(1)+4+4*2+……+4(n-1)+(n-1)   
                                 =2n^2-n+1
(3) 封闭曲线分平面问题
题目大致如设有n条封闭曲线画在平面上,而任何两条封闭曲线恰好相交于两点,
且任何三条封闭曲线不相交于同一点,问这些封闭曲线把平面分割成的区域个数。
析:当n-1个圆时,区域数为f(n-1).那么第n个圆就必须与前n-1个圆相交,
则第n个圆被分为2(n-1)段线段,增加了2(n-1)个区域。
        故: f(n)=f(n-1)+2(n-1)=f(1)+2+4+……+2(n-1)
                               =n^2-n+2
(4)平面分割空间问题(hdu1290)
由二维的分割问题可知,平面分割与线之间的交点有关,即交点决定射线和线段的条数,
从而决定新增的区域数。试想在三维中则是否与平面的交线有关呢?当有n-1个平面时,
分割的空间数为f(n-1)。要有最多的空间数,则第n个平面需与前n-1个平面相交,
且不能有共同的交线。即最多有n-1 条交线。而这n-1条交线把第n个平面最多分割成
g(n-1)个区域。(g(n)为(1)中的直线分平面的个数)此平面将原有的空间一分
为二,则最多增加g(n-1)个空间。
        故:f=f(n-1)+g(n-1)    ps:g(n)=n(n+1)/2+1
                   =f(n-2)+g(n-2)+g(n-1)
                   ……
                  =f(1)+g(1)+g(2)+……+g(n-1)
                  =2+(1*2+2*3+3*4+……+(n-1)n)/2+(n-1)
                  =(1+2^2+3^2+4^2+……+n^2-1-2-3-……-n )/2+n+1
                  =(n^3+5n)/6+1

感觉不错的:一,最大子序列、最长递增子序列、最长公共子串、最长公共子序列、字符串编辑距离 - Orisun - 博客园
http://www.cnblogs.com/zhangchaoyang/articles/2012070.html

二,一个显示排序过程的Python脚本 | 酷 壳 - CoolShell.cn
http://coolshell.cn/articles/536.html


非常好的动态规划总结,DP总结

总结的非常好,谢谢作者。 http://cppblog.com/menjitianya/archive/2015/10/23/212084.html 目录   一、动态规...
  • mmc2015
  • mmc2015
  • 2017年06月22日 09:31
  • 2658

我的总结-动态规划(DP)

说到动态规划,最开始接触到这类型的题目是在教练上课的时候放了杭电OJ的名为“数塔”的题目,其实仅靠着没有任何算法基础而且对电脑编程处理问题的方式还不熟悉只会暴力加模拟的思维方式,着实没有除开暴力之外的...
  • mo1302267724
  • mo1302267724
  • 2015年04月06日 20:50
  • 1107

动态规划思想之最小硬币分配数

动态规划算法求解问题的优势,自己对与动态规划算法的一些小心得体会。
  • it_wjw
  • it_wjw
  • 2016年05月25日 22:15
  • 1427

0-1背包问题入门小结 动态规划(DP)经典题目 POJ324 POJ1276

最近在做背包问题,今天写点东西总结一下。         背包问题,常见的有三种类型:基本的0-1背包、完全背包和多重背包、二维背包          首先是基本的0-1背包问题。因为这里...
  • u010422351
  • u010422351
  • 2014年09月20日 20:45
  • 332

hdu - 动态规划 入门小结 - Bone Collector - 2191 - 重温世界杯 1422

一: 01背包简单题 Bone Collector Bone Collector Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 3...
  • FXXKI
  • FXXKI
  • 2014年12月07日 21:28
  • 521

算法小结--动态规划(一)

用一个故事教会我动态规划:(转载)查看这里实例一:Fibonacci序列 F(n) = F(n-1) + F(n-2),F(0) = 1;f(1) = 1; 递归算法: int fuc(int n)...
  • hiluo302
  • hiluo302
  • 2016年03月21日 13:39
  • 207

LCS 经典题及变式的小结【动态规划】

LCS 是最大公共子串的意思。首先来一道最简单的LCS题,即求两个字符串的LCS长度 //toj1683 LCS 最长公共子序列 #include #include using names...
  • juanjuanguai
  • juanjuanguai
  • 2013年09月22日 01:21
  • 414

动态规划专题小结:四边形不等式优化

今天第一次学习四边形不等式优化dp,感觉优化效果十分给力,不过数学味道比较浓重,证明比较复杂。因此这里删繁就简,给出关于四边形不等式优化必须要明白的地方,以后直接套用条件即可。 四边形不等式优化...
  • qq_16964363
  • qq_16964363
  • 2017年05月03日 12:34
  • 80

算法导论小结(8)-动态规划与贪心算法

By:             潘云登 Date:          2009-7-23 Email:         intrepyd@gmail.com Homepage: http://b...
  • zhoujunfeng2340
  • zhoujunfeng2340
  • 2013年10月22日 21:19
  • 787

【Just AC it】IA 动态规划 小结 byPlato

【Just AC it】IA 动态规划 小结   综述: 8#21开的题目,开学8#26-9#1休息了一个星期,然后今天把最后3题写了。 题目质量很高。 能不看题解做出来的就3道:A(树状数...
  • XDU_Truth
  • XDU_Truth
  • 2013年09月02日 23:53
  • 588
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:动态规划小结
举报原因:
原因补充:

(最多只允许输入30个字)