割线法求方程根

转载 2013年12月05日 23:44:59

割线法

维基百科,自由的百科全书
跳转至: 导航 搜索

数值分析中,割线法是一个求根算法,该方法用一系列割线的根来近似代替函数f的根。

方法

割线法的最初两个迭代。红色曲线表示函数f,蓝色曲线表示割线。

割线法由以下的递推关系定义:

x_{n+1} = x_n - \frac{x_n-x_{n-1}}{f(x_n)-f(x_{n-1})} f(x_n).

从上式中可以看出,割线法需要两个初始值x0x1,它们离函数的根越近越好。

方法的推导

给定xn−1xn,我们作通过点(xn−1, f(xn−1))和(xn, f(xn))的直线,如右图所示。注意这条直线是函数f割线,或弦。这条割线的点斜式直线方程为:

 y - f(x_n) = \frac{f(x_n)-f(x_{n-1})}{x_n-x_{n-1}} (x-x_n).

我们现在选择xn+1为这条割线的根,因此xn+1满足以下的方程:

 f(x_n) + \frac{f(x_n)-f(x_{n-1})}{x_n-x_{n-1}} (x-x_n) = 0.

解这个方程,便可以得出割线法的递推关系。

收敛

如果初始值x0x1离根足够近,则割线法的第n次迭代x收敛于f的一个根。收敛速率为α,其中:

 \alpha = \frac{1+\sqrt{5}}{2} \approx 1.618

黄金比。特别地,收敛速率是超线性的。

这个结果只在某些条件下才成立,例如f是连续的二阶可导函数,且函数的根不是重根。

如果初始值离根太远,则不能保证割线法收敛。

相关文章推荐

牛顿迭代法、双点割线法及改进的双点割线法的比较

牛顿迭代法、双点割线法及改进的双点割线法的比较1 题目:求=0的根。2 算法组织:2.1 牛顿迭代法算法原理见《计算方法教程(第2版)》,凌永祥、陈明奎编著,西安交通大学出版社,2005年4月第2版,...

牛顿法求方程根

牛顿法 维基百科,自由的百科全书 跳转至: 导航、 搜索 本条目没有列出任何参考或来源。(2013年11月23日) 维基百科所有的内容都应该可供查证...
  • BPSSY
  • BPSSY
  • 2013年12月06日 01:02
  • 1491

牛顿法求方程根

  • 2015年04月13日 17:29
  • 452B
  • 下载

delphi版牛顿法求方程的根

  • 2011年04月11日 14:11
  • 165KB
  • 下载

刷清橙OJ--A1094.牛顿迭代法求方程的根

问题: A1094. 牛顿迭代法求方程的根 时间限制:1.0s   内存限制:256.0MB   总提交次数:1330   AC次数:514   平均分:52.12 【问题描述】   给定三...

c语言弦截法求方程的根

  • 2013年01月08日 11:16
  • 646B
  • 下载

牛顿迭代法求方程解

牛顿迭代法(Newton's method)又称为牛顿-拉夫逊方法(Newton-Raphson method),它是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法。多数方程不存在求根公...

追赶法求方程

  • 2013年05月01日 22:32
  • 1KB
  • 下载

使用牛顿迭代法求根 一元三次方程的根

牛顿迭代法(Newton’s method)又称为牛顿-拉夫逊方法(Newton-Raphson method),它是牛顿在17 世纪提出的一种在实数域和复数域上近似求解方程的方法。多数方程不存在求根...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:割线法求方程根
举报原因:
原因补充:

(最多只允许输入30个字)