牛顿法求方程根

转载 2013年12月06日 01:02:54

牛顿法

维基百科,自由的百科全书
跳转至: 导航 搜索
Ganzhi001.jpg

牛顿法Newton's method)又称为牛顿-拉弗森方法Newton-Raphson method),它是一种在实数域和复数域上近似求解方程的方法。方法使用函数f(x)泰勒级数的前面几项来寻找方程f(x)=0的根。

起源

牛顿法最初由艾萨克·牛顿流数法Method of Fluxions1671年完成,在牛顿死后的1736年公开发表)。约瑟夫·拉弗森也曾于1690年Analysis Aequationum中提出此方法。

方法说明

蓝线表示方程f而红线表示切线. 可以看出xn+1xn更靠近f所要求的根x.

首先,选择一个接近函数f(x)零点x_0,计算相应的f(x_0)和切线斜率f'(x_0)(这里f'表示函数f导数)。然后我们计算穿过点(x_0, f(x_0))并且斜率为f'(x_0)的直线和x轴的交点的x坐标,也就是求如下方程的解:

f(x_0)= (x_0-x)\cdot f'(x_0)

我们将新求得的点的x坐标命名为x_1,通常x_1会比x_0更接近方程f(x)=0的解。因此我们现在可以利用x_1开始下一轮迭代。迭代公式可化简为如下所示:

x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}

已经证明,如果f'连续的,并且待求的零点x是孤立的,那么在零点x周围存在一个区域,只要初始值x_0位于这个邻近区域内,那么牛顿法必定收敛。 并且,如果f'(x)不为0, 那么牛顿法将具有平方收敛的性能. 粗略的说,这意味着每迭代一次,牛顿法结果的有效数字将增加一倍。

其它例子

第一个例子

求方程f(x) = cos(x) − x3的根。两边求导,得f '(x) = −sin(x) − 3x2。由于-1 ≤ cos(x) ≤ 1(对于所有x),则-1 ≤ x3 ≤ 1,即-1 ≤ x ≤ 1,可知方程的根位于0和1之间。我们从x0 = 0.5开始。

\begin{matrix}  x_1 & = & x_0 - \frac{f(x_0)}{f'(x_0)} & = & 0.5 - \frac{\cos(0.5) - 0.5^3}{-\sin(0.5) - 3 \times 0.5^2} & = & 1.112141637097 \\  x_2 & = & x_1 - \frac{f(x_1)}{f'(x_1)} & = & \vdots & = & \underline{0.}909672693736 \\  x_3 & = & \vdots & = & \vdots & = & \underline{0.86}7263818209 \\  x_4 & = & \vdots & = & \vdots & = & \underline{0.86547}7135298 \\  x_5 & = & \vdots & = & \vdots & = & \underline{0.8654740331}11 \\  x_6 & = & \vdots &= & \vdots & = & \underline{0.865474033102}\end{matrix}

第二个例子

牛顿法亦可发挥与泰勒展开式,对于函式展开的功能。


求a的m次方根。

x^m - a= 0

f(x) = x^m - af'(x) = mx^{m-1}

而a的m次方根,亦是x的解,

以牛顿法来迭代:

x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}

x_{n+1} = x_n - \frac{x_n^m-a}{mx_n^{m-1}}

x_{n+1} = x_n - \frac{x_n}{m}(1-ax_n^{-m})


(或 x_{n+1} = x_n - \frac{1}{m}(x_n-a\frac{x_n}{x_n^m}))

相关文章推荐

Newton法(牛顿法 Newton Method)

1、牛顿法应用范围                          牛顿法主要有两个应用方向:1、目标函数最优化求解。例:已知 f(x)的表达形式,,求 ,及g(x)取最小值时的 x ?,即 ...

牛顿迭代法(牛顿-拉弗森方法(Newton-Raphson method))

起源[编辑] 牛顿法最初由艾萨克·牛顿在《流数法》(Method of Fluxions,1671年完成,在牛顿死后的1736年公开发表)。约瑟夫·拉弗森也曾于1690年在Analysis ...
  • szlcw1
  • szlcw1
  • 2014年04月22日 21:22
  • 5906

二分法和牛顿迭代法求平方根(Python实现)

求一个数的平方根函数sqrt(int num) ,在大多数语言中都提供实现。那么要求一个数的平方根,是怎么实现的呢? 实际上求平方根的算法方法主要有两种:二分法(binary search)和牛顿迭代...

用Python实现牛顿法求极值

对于一个多元函数f(x)=f(x1,x2,⋯,xn)f(x)=f(x_{1},x_{2},\cdots,x_{n}),用牛顿法求其极小值的迭代格式为 xk+1=xk−G−1kgkx_{k+1}=x_...

割线法求方程根

割线法 维基百科,自由的百科全书 跳转至: 导航、 搜索 在数值分析中,割线法是一个求根算法,该方法用一系列割线的根来近似代替函数f的根。 目录 1 方法2...
  • BPSSY
  • BPSSY
  • 2013年12月05日 23:44
  • 2094

delphi版牛顿法求方程的根

  • 2011年04月11日 14:11
  • 165KB
  • 下载

牛顿法求方程根

  • 2015年04月13日 17:29
  • 452B
  • 下载

刷清橙OJ--A1094.牛顿迭代法求方程的根

问题: A1094. 牛顿迭代法求方程的根 时间限制:1.0s   内存限制:256.0MB   总提交次数:1330   AC次数:514   平均分:52.12 【问题描述】   给定三...

二分法和牛顿法求根c++程序

  • 2013年12月13日 00:37
  • 865KB
  • 下载
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:牛顿法求方程根
举报原因:
原因补充:

(最多只允许输入30个字)