牛顿法求方程根

转载 2013年12月06日 01:02:54

牛顿法

维基百科,自由的百科全书
跳转至: 导航 搜索
Ganzhi001.jpg

牛顿法Newton's method)又称为牛顿-拉弗森方法Newton-Raphson method),它是一种在实数域和复数域上近似求解方程的方法。方法使用函数f(x)泰勒级数的前面几项来寻找方程f(x)=0的根。

起源

牛顿法最初由艾萨克·牛顿流数法Method of Fluxions1671年完成,在牛顿死后的1736年公开发表)。约瑟夫·拉弗森也曾于1690年Analysis Aequationum中提出此方法。

方法说明

蓝线表示方程f而红线表示切线. 可以看出xn+1xn更靠近f所要求的根x.

首先,选择一个接近函数f(x)零点x_0,计算相应的f(x_0)和切线斜率f'(x_0)(这里f'表示函数f导数)。然后我们计算穿过点(x_0, f(x_0))并且斜率为f'(x_0)的直线和x轴的交点的x坐标,也就是求如下方程的解:

f(x_0)= (x_0-x)\cdot f'(x_0)

我们将新求得的点的x坐标命名为x_1,通常x_1会比x_0更接近方程f(x)=0的解。因此我们现在可以利用x_1开始下一轮迭代。迭代公式可化简为如下所示:

x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}

已经证明,如果f'连续的,并且待求的零点x是孤立的,那么在零点x周围存在一个区域,只要初始值x_0位于这个邻近区域内,那么牛顿法必定收敛。 并且,如果f'(x)不为0, 那么牛顿法将具有平方收敛的性能. 粗略的说,这意味着每迭代一次,牛顿法结果的有效数字将增加一倍。

其它例子

第一个例子

求方程f(x) = cos(x) − x3的根。两边求导,得f '(x) = −sin(x) − 3x2。由于-1 ≤ cos(x) ≤ 1(对于所有x),则-1 ≤ x3 ≤ 1,即-1 ≤ x ≤ 1,可知方程的根位于0和1之间。我们从x0 = 0.5开始。

\begin{matrix}  x_1 & = & x_0 - \frac{f(x_0)}{f'(x_0)} & = & 0.5 - \frac{\cos(0.5) - 0.5^3}{-\sin(0.5) - 3 \times 0.5^2} & = & 1.112141637097 \\  x_2 & = & x_1 - \frac{f(x_1)}{f'(x_1)} & = & \vdots & = & \underline{0.}909672693736 \\  x_3 & = & \vdots & = & \vdots & = & \underline{0.86}7263818209 \\  x_4 & = & \vdots & = & \vdots & = & \underline{0.86547}7135298 \\  x_5 & = & \vdots & = & \vdots & = & \underline{0.8654740331}11 \\  x_6 & = & \vdots &= & \vdots & = & \underline{0.865474033102}\end{matrix}

第二个例子

牛顿法亦可发挥与泰勒展开式,对于函式展开的功能。


求a的m次方根。

x^m - a= 0

f(x) = x^m - af'(x) = mx^{m-1}

而a的m次方根,亦是x的解,

以牛顿法来迭代:

x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}

x_{n+1} = x_n - \frac{x_n^m-a}{mx_n^{m-1}}

x_{n+1} = x_n - \frac{x_n}{m}(1-ax_n^{-m})


(或 x_{n+1} = x_n - \frac{1}{m}(x_n-a\frac{x_n}{x_n^m}))

牛顿迭代法求解方程

说明:该片博客源于博主的早些时候的一个csdn博客中的一篇,由于近期使用到了,所以再次作一总结。原文地址概述牛顿迭代法(Newton’s method)又称为牛顿-拉夫逊(拉弗森)方法(Newton-...
  • Robin__Chou
  • Robin__Chou
  • 2016年08月03日 14:02
  • 831

3元一次方程(牛顿迭代法求方程的根)

牛顿迭代方求方程根的方法自行查找
  • dd_zhouqian
  • dd_zhouqian
  • 2014年07月15日 17:03
  • 1026

1、编写程序,分别用二分法和牛顿迭代法求解方程x3 – 3x – 1 = 0在x = 2附近的实根,要求计算精确到小数点后七位数字为止,并将求出的近似结果与理论值2cos20 相比较,二分法的初始迭代

二分法: #include #include void main() {     double x,x1=1,x2=3,f1,f2,f;     f1=x1*x1*x1-3*x1-1;...
  • xiezilidemao
  • xiezilidemao
  • 2016年10月09日 23:08
  • 2520

C语言之基本算法25—牛顿迭代法求方程近似根

//牛顿迭代法! /* ============================================================ 题目:用牛顿迭代法求解3*x*x*x-2*x*x...
  • LZX19901012
  • LZX19901012
  • 2015年07月10日 12:07
  • 1722

二分法求方程的根

参考代码如下:
  • iamzxf
  • iamzxf
  • 2014年11月03日 16:28
  • 1854

用牛顿方法解一元非线性方程的根(Matlab实现)

题目:用牛顿法求方程x-cos(x)=0的实根(精确到1E-6)。 (1)要求用函数调用。 (2)进一步研究和弦截法作比较。 算法分析: (1)       此题是利用牛顿方法解一...
  • wxwlll
  • wxwlll
  • 2011年10月30日 14:09
  • 11382

用弦截法求方程 f(x)=x^3-5x^2+16x-80=0 的根

#include #include double x,x1,x2; double fx(double x) { double c; c=x*x*x-5*x*x+16*x-80; return...
  • tjq2012
  • tjq2012
  • 2014年12月07日 16:30
  • 1661

用二分法求下面方程在(-10,10)之间的根:2x^3-4x^2+3x-6=0

【描述】 用二分法求下面方程在(-10,10)之间的根:2x^3-4x^2+3x-6=0 【C语言】 #include #include int main() { double x1...
  • u013053957
  • u013053957
  • 2015年06月22日 11:43
  • 5456

求一元方程的根(牛顿迭代法)

牛顿迭代公式: 那么根据该公式可以按以下步骤求解一元方程的任意次的根 (1) 选一个方程的近似根,赋给变量Xn; (2) 将x0的值保存于变量x1,然后计算g(x1),并将结果存于变量x0;...
  • u013074465
  • u013074465
  • 2015年04月27日 09:05
  • 1556

用牛顿迭代法求下面方程在1.5附近的根:2x^3-4x^2+3X-6=0

【描述】 用牛顿迭代法求下面方程在1.5附近的根:2x^3-4x^2+3X-6=0 【程序流程分析】 ① 赋值x0=1.5,即迭代初值;   ② 用初值x0代入方程中计算此时的f(x0)及f’(...
  • u013053957
  • u013053957
  • 2015年06月22日 11:16
  • 6315
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:牛顿法求方程根
举报原因:
原因补充:

(最多只允许输入30个字)