ZOJ 3469(区间DP)

原创 2015年11月17日 20:02:26
//第一次做区间DP的题 看了别人的题解写的
//解法只要将各个点(包括餐厅的位置)按照距离原点的距离升序排序
//然后从餐厅这个点开始向两侧区间DP
// dp[i][j][0] 表示 当前点送完了区间[i,j]的外卖并且在区间的左端点I点
// dp[i][j][1] 表示 当前点送完了区间[i,j]的外卖并且在区间的右端点J点
//那么dp[i][j][0] 可由dp[i+1][j][0] 和 dp[i+1][j][1] 推出
//        dp[i][j][1] 可由dp[i][j-1][0] 和  dp[i][j-1][1]  推出
#include <iostream>
#include "stdio.h"
#include "stdlib.h"
#include "string.h"
#include "algorithm"
#include <queue>
#include <stack>
#define N 100005

#define INF 1<<30
using namespace std;
int dp[1005][1005][2];
int sum[1005];

struct node {
    int x, v;
}point[1005];

int cmp(node a, node b)
{
    return a.x < b.x;
}

int cal(int a, int b)
{
    return sum[b]-sum[a - 1];
}
int main()
{
    int n, v, x, op;
    //freopen("t", "r", stdin);
    while(scanf("%d%d%d", &n, &v, &x) != EOF)
    {
        for(int i = 1; i <= n; i++)
            scanf("%d%d", &point[i].x, &point[i].v);
        point[++n].x = x, point[n].v = 0;
        sort(point+1, point+n+1, cmp);
        sum[0] = 0;
        for(int i = 1; i <= n; i++)
        {
            if(point[i].x == x )
            {
                op = i;
            }
            sum[i] = sum[i-1] + point[i].v;
        }

        for(int i = 1; i <= n; i++)
            for(int j = 1; j <= n; j++)
                dp[i][j][0] = dp[i][j][1] = INF;

        dp[op][op][0] = dp[op][op][1] = 0;

        for( int i = op; i >= 1; i--)
            for( int j = op; j <= n; j++)
            {
                int cost = cal(1, i - 1) + cal(j + 1, n);
                if(i == j) continue;
                dp[i][j][0] = min( dp[i][j][0] , dp[i + 1][j][0] + (point[i+1].x - point[i].x) * ( cost + point[i].v) );
                dp[i][j][0] = min( dp[i][j][0] , dp[i + 1][j][1] + (point[j].x - point[i].x) * ( cost +point[i].v ) );
                dp[i][j][1] = min( dp[i][j][1] , dp[i][j - 1][0] + (point[j].x - point[i].x)  * (cost + point[j].v ) );
                dp[i][j][1] = min( dp[i][j][1] , dp[i][j - 1][1] + (point[j].x - point[j-1].x) * (cost + point[j].v ) );
            }

        printf("%d\n", v*(min( dp[1][n][0], dp[1][n][1])));
    }
}


版权声明:本文为博主原创文章,未经博主允许不得转载。

ZOJ3469:Food Delivery(区间DP)

When we are focusing on solving problems, we usually prefer to stay in front of computers rather tha...
  • libin56842
  • libin56842
  • 2014年08月11日 14:41
  • 1848

zoj3469(区间dp)

链接:点击打开链接 题意:在x轴上有n个客人,每个客人每秒增加的愤怒值不同。给出客人和餐厅的位置,以及客人每分钟增加的愤怒值,和送餐行走一公里需要的时间,问送完n个客人的外卖最小愤怒值 代码:#inc...
  • stay_accept
  • stay_accept
  • 2016年06月07日 18:43
  • 569

zoj 3469 Food Delivery(区间DP,好题,)

1、http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=4255 好题,思维强度挺大,得好好理解各个状态的转换 2、题目大意: ...
  • sdjzping
  • sdjzping
  • 2014年02月11日 10:56
  • 1672

ZOJ 3469 区间dp

Food Delivery Time Limit: 2 Seconds      Memory Limit: 65536 KB When we are focusing on sol...
  • u012358934
  • u012358934
  • 2014年03月12日 00:34
  • 823

ZOJ 3469 区间DP

题意一个人从X点出发给N个点送食物,速度为1/v,如果第xi个点的客人没有收到食物,那么他的不满意度将会增加bi每分钟。问不满意度最少为多少?题解很有趣的一道区间DP题,将出发点也放入点集中,排序,进...
  • zhenlingcn
  • zhenlingcn
  • 2017年08月01日 21:07
  • 50

zoj 3469 区间dp

http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3469 When we are focusing on solving...
  • u013573047
  • u013573047
  • 2014年05月23日 21:35
  • 451

zoj 3469 Food Delivery (区间dp)

没想到还会回来写博客,算是回忆下把,来一道区间dp基础题。 题意:一个送外卖的从某个出发点送外卖,但是每个顾客地点都有一个不满意值,会随着时间每秒增加b[i],每个顾客地点都有一个距离,可以人为...
  • My_ACM_Dream
  • My_ACM_Dream
  • 2015年07月23日 10:28
  • 662

Food Delivery ZOJ - 3469 区间dp

When we are focusing on solving problems, we usually prefer to stay in front of computers rather tha...
  • YCQ_Lancet
  • YCQ_Lancet
  • 2017年11月12日 16:17
  • 57

ZOJ 3469 - Food Delivery(区间DP)

题目: http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3469 题意: 给出直线上n个人的坐标和邮递员的坐标,邮递...
  • u013534690
  • u013534690
  • 2015年05月05日 16:22
  • 302

ZOJ Problem Set - 3469(区间dp)

//首先声明 本题思路代码都是抄袭大牛ZeroClock的 //思路: 例如  1 2 X 4 5 // 那么要给1 送饭必须先经过2 就是说必须先给内围的客人送饭  // 那么dp的区...
  • u011411189
  • u011411189
  • 2014年03月05日 15:01
  • 421
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:ZOJ 3469(区间DP)
举报原因:
原因补充:

(最多只允许输入30个字)