二叉查找树实现类——二叉链表

原创 2012年03月26日 21:44:09

今晚头还是晕晕的,就随便写个数据结构来提神。

就选了二叉查找树吧,老规矩,直接参考了Wiki上面的内容。

二叉查找树的特性:

二叉查找树Binary Search Tree),或者是一棵空树,或者是具有下列性质的二叉树

  1. 若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值;
  2. 若它的右子树不空,则右子树上所有结点的值均大于它的根结点的值;
  3. 它的左、右子树也分别为二叉排序树。

二叉查找树的讨论:

二叉排序树的查找过程和次优二叉树类似,通常采取二叉链表作为二叉排序树的存储结构。中序遍历二叉排序树可得到一个关键字的有序序列,一个无序序列可以通过构造一棵二叉排序树变成一个有序序列,构造树的过程即为对无序序列进行排序的过程。每次插入的新的结点都是二叉排序树上新的叶子结点,在进行插入操作时,不必移动其它结点,只需改动某个结点的指针,由空变为非空即可。搜索,插入,删除的复杂度等于树高,期望O(logn),最坏O(n)(数列有序,树退化成线性表).

虽然二叉排序树的最坏效率是O(n),但它支持动态查询,且有很多改进版的二叉排序树可以使树高为O(logn),如SBT,AVL,红黑树等.故不失为一种好的动态排序方法.


代码如下:

#include <iostream>

using namespace std;

template <class NodeType>
class BSTreeNode
{
public:
	NodeType value;
	BSTreeNode* lChild, rChild;

	BSTreeNode();
};

template <class NodeType>
BSTreeNode<NodeType>::BSTreeNode()
{
	lChild = NULL;
	rChild = NULL;
}

template <class NodeType>
class BinarySearchTree
{
public:
	BinarySearchTree();
	BinarySearchTree(BSTreeNode<NodeType> *node);
	~BinarySearchTree();

	void CreatBinaryTree(BSTreeNode<NodeType> *node);
	void DestroyTree(BSTreeNode<NodeType> *node);
	void InsertValue(NodeType value);							//NodeType必须重载了==及>操作符
	void DeleteNode(BSTreeNode<NodeType> *node);				//NodeType必须重载了=操作符
	BSTreeNode<NodeType>* FindValue(NodeType value);			//NodeType必须重载了=,==及>操作符

private:
	BSTreeNode<NodeType> *root;
	void CopyTree(BSTreeNode<NodeType> *position, BSTreeNode<NodeType> *node);
	void InsertValue(BSTreeNode<NodeType> *node, NodeType value);
	BSTreeNode<NodeType>* FindValueFrom(BSTreeNode<NodeType> *node, NodeType value);
};

template <class NodeType>
BinarySearchTree<NodeType>::BinarySearchTree()
{
	root = NULL;
}

template <class NodeType>
BinarySearchTree<NodeType>::BinarySearchTree(BSTreeNode<NodeType> *node)
{
	CreatBinaryTree(node);
}

template <class NodeType>
BinarySearchTree<NodeType>::~BinarySearchTree()
{
	DestroyTree(root);
}

template <class NodeType>
void BinarySearchTree<NodeType>::CreatBinaryTree(BSTreeNode<NodeType> *node)
{
	CopyTree(root, node);
}

template <class NodeType>
void BinarySearchTree<NodeType>::CopyTree(BSTreeNode<NodeType> *position, BSTreeNode<NodeType> *node)
{
	if (NULL == node)
	{
		position = NULL;
		return ;
	}

	position = new BSTreeNode<NodeType>;
	position->value = node->value;

	CopyTree(position->lChild, node->lChild);
	CopyTree(position->rChild, node->rChild);
}

template <class NodeType>
void BinarySearchTree<NodeType>::DestroyTree(BSTreeNode<NodeType> *node)
{
	if (NULL == node)
	{
		return ;
	}

	DestroyTree(node->lChild);
	DestroyTree(node->rChild);

	delete node;
}

template <class NodeType>
void BinarySearchTree<NodeType>::InsertValue(NodeType value)
{
	InsertValue(root, value);
}

template <class NodeType>
void BinarySearchTree<NodeType>::InsertValue(BSTreeNode<NodeType> *node, NodeType value)
{
	if (NULL == node)
	{
		node = new BSTreeNode<NodeType>;
		node->value = value;
		return ;
	}

	if (node->value == value)
	{
		return ;
	}
	else if ( node->value > value)
	{
		InsertValue(node->lChild, value);
	}
	else
	{
		InsertValue(node->rChild, value);
	}
}

template <class NodeType>
BSTreeNode<NodeType>* BinarySearchTree<NodeType>::FindValueFrom(BSTreeNode<NodeType> *node, NodeType value)
{
	if (NULL == node)
	{
		return NULL;
	}
	
	if (node->value == value)
	{
		return node;
	}
	else if (node->value > value)
	{
		return FindValueFrom(node->lChild, value);
	}
	else
	{
		return FindValueFrom(node->rChild, value);
	}
}

template <class NodeType>
BSTreeNode<NodeType>* BinarySearchTree<NodeType>::FindValue(NodeType value)
{
	return FindValueFrom(root,value);
}

template <class NodeType>
void BinarySearchTree<NodeType>::DeleteNode(BSTreeNode<NodeType> *node)
{
	if (NULL == node)
	{
		return ;
	}

	BSTreeNode<NodeType> *currentNode = FindValue(node->value);
	if (NULL == currentNode)
	{
		return ;
	}

	BSTreeNode<NodeType> *lastNode;
	while (currentNode != NULL)
	{
		lastNode = currentNode;
		currentNode->value = currentNode->rChild.value;
		currentNode = currentNode->rChild;
	}

	delete currentNode;
	lastNode->rChild = NULL;
}


版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

AVL树实现类——二叉链表实现

(一个人感冒咳嗽不悲剧,悲剧的是全家都感冒咳嗽,没人做事……忽冷忽热的天气得注意保暖) 首先吧,关于AVL树的知识,还是老规矩,Wiki下。 “在计算机科学中,AVL树是最先发明的自平衡二叉查找树...

C++学习笔记(四)指针实现的链表、堆栈、队列、二叉查找树

一、概述 本文将介绍在程序执行期间动态消长的动态数据结构,包括链表(linked list)、栈(stack)、队列(queue)、二叉树(binary tree)。这些动态数据结构与定长数据结构(数...

课程设计——二叉查找树

  • 2014-03-13 16:08
  • 116KB
  • 下载

※数据结构※→☆非线性结构(tree)☆============AVL树/自平衡二叉查找树(AVL树/自平衡二叉查) 顺序存储结构(tree AVL sequence)(二十五)

AVL树/自平衡二叉查找树         在计算机科学中,AVL树是最先发明的自平衡二叉查找树。在AVL树中任何节点的两个子树的高度最大差别为一,所以它也被称为高度平衡树。查找、插入和删除在平均和...

二叉搜索树(二叉排序树,二叉查找树,二叉检索树)的查找,插入,删除

1,—二叉搜索树定义? —(1)每个节点有一个唯一的key值,且所有结点互不相同; (2)—左子树所有key值小于根的key值; (3)—右子树所有key值大于根的key值; —(4)左右子树都是二叉...

数据结构与算法——二叉查找树类的C++实现

二叉树的平均深度为O(logN); 二叉查找树在二叉树的基础上,增加的性质为:对于树中每一个结点X,它的左子树中所有项的值小于X中的项,而它的右子树中

Lintcode 将二叉查找树转换为双链表

将二叉查找树转换成双链表描述 笔记 数据 评测 将一个二叉查找树按照中序遍历转换成双向链表。您在真实的面试中是否遇到过这个题? Yes 样例 给定一个二叉查找树:4 / \ 2...

二叉查找树转双向链表(笔试)

输入一棵二元查找树,将该二元查找树转换成一个排序的双向链表。 要求不能创建任何新的结点,只能调整指针的指向                      10   &...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)