关闭

Uva 674 Coin Change(水动规)

105人阅读 评论(0) 收藏 举报
分类:

好吧,先说一下,我是在做背包的专题,一看到这题还以为时多重背包和完全背包的组合

一开始还想,那两种背包我没有写过耶,这题有难度,然后下手写以下,写着写着发现不太对劲,

然后突然醒悟,这一题压根就不是什么背包问题,就是很水的动态规划题.

题目大意;你有无限张1,5,10,25,50面值的硬币,然后给你一个金额n(1<=n<=7489),问组成他有多少总情况.

思路:dp[j]代表组成j金额的最优方案个数,转移方程: dp[j] += dp[j - num[i]]; (即dp[j]由前面的最优方案推倒所得)


以下时AC代码:(蠢了,这个根本不需要每次都计算,因为动态规划会遍历所有的情况,只需要过一遍,打个表就可以了)

#include <cstdio>
#include <queue>
#include <cstring>
#include <iostream>
#include <cstdlib>
#include <algorithm>
#include <vector>
#include <map>
#include <set>
#include <ctime>
#include <cmath>

using namespace std;
const int N = 400000;
int num[10];
int dp[N];
int main()
{
	//freopen("/home/user/桌面/in","r",stdin);
	int n;
	num[1]=1; num[2]=5; num[3]=10; num[4]=25; num[5]=50;
	while(scanf("%d",&n)==1){
		int len = 5;
		for(int i=0;i<=n;++i) dp[i]=1;
		for(int i=2;i<=5;++i){
			for(int j=num[i];j<=n;++j){
				dp[j] += dp[j-num[i]];
			}
		}

		printf("%d\n",dp[n]);
	}
	//printf("time=%.3lf",(double)clock()/CLOCKS_PER_SEC);
	return 0;
}

0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:995次
    • 积分:87
    • 等级:
    • 排名:千里之外
    • 原创:8篇
    • 转载:0篇
    • 译文:0篇
    • 评论:0条
    文章分类
    文章存档