关闭

Uva 147 Dollars(是完全背包)

111人阅读 评论(0) 收藏 举报
分类:

这题目和Uva 674的思路完全一样,只要开始对数据简单地弄弄,那么就可以了.

题目大意:你有11种面值的币,然后给你一个金额,问有多少种情况可以凑出来(一定是合法的).

思路:dp[j]代表凑出j金额的总方案个数,动态转移方程:dp[j] += dp[j - num[i]]; 由前面最优解推出;

注意:精度!精度!精度!(int n = (int)(nt*100 + 0.5),因为这个原因还我WA了几次;


个人觉得这题不是完全背包,虽然每种物品有无限种,符合完全背包的其中一个定义,但dp的解却不符合.

为什么我会这么说呢?因为完全背包求的是某情况下的最优解,而这里求的时最优解个数?

(可能我对完全背包理解的不是很投赤吧 - -)


AC代码:(对了,打表)

#include <cstdio>
#include <queue>
#include <cstring>
#include <iostream>
#include <cstdlib>
#include <algorithm>
#include <vector>
#include <map>
#include <set>
#include <ctime>
#include <cmath>

using namespace std;
int num[11]={5,10,20,50,100,200,500,1000,2000,5000,10000};
long long  dp[30010];
int main()
{
	//freopen("/home/user/桌面/in","r",stdin);
	dp[0]=1;
	for(int i=0;i<11;++i){
		for(int j=num[i];j<=30000; ++j){
			dp[j] += dp[j - num[i]];
		}
	}
	double nt;
	while(scanf("%lf",&nt)==1){
		if(nt == 0) break;
		int n = (int)(nt*100 + 0.5);
		printf("%6.2lf%17lld\n",nt,dp[n]);
	}
	//printf("time=%.3lf",(double)clock()/CLOCKS_PER_SEC);
	return 0;
}



0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:1172次
    • 积分:90
    • 等级:
    • 排名:千里之外
    • 原创:8篇
    • 转载:0篇
    • 译文:0篇
    • 评论:0条
    文章分类
    文章存档