# 【BZOJ1576】[Usaco2009 Jan]安全路经Travel【最短路树】【树链剖分】【线段树】

【题目链接】

【hzwer的题解】orz

/* Telekinetic Forest Guard */
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>
#include <vector>
#include <utility>

using namespace std;

typedef pair<int, int> pii;

const int maxn = 100005, maxm = 200005, maxk = 18, inf = 0x3f3f3f3f;

int n, m, head[maxn], cnt, pre[maxk][maxn], dis[maxn], depth[maxn], size[maxn], son[maxn], id[maxn], clo, top[maxn], tr[maxn << 2], tagv[maxn << 2];

struct _edge {
int v, w, next;
} g[maxm << 1];

struct _data {
int u, v, w;
} e[maxm];

int f = 1, x = 0; char ch = getchar();
for(; ch < '0' || ch > '9'; ch = getchar()) f = ch == '-' ? -1 : 1;
for(; ch >= '0' && ch <= '9'; ch = getchar()) x = x * 10 + ch - '0';
return f * x;
}

inline void add(int u, int v, int w) {
}

priority_queue<pii, vector<pii>, greater<pii> > q;

inline void dijkstra() {
for(int i = 1; i <= n; i++) dis[i] = inf;
dis[1] = 0;
q.push(pii(0, 1));
while(!q.empty()) {
pii t = q.top(); q.pop();
int u = t.second;
if(t.first > dis[u]) continue;
for(int i = head[u]; ~i; i = g[i].next) if(dis[g[i].v] > dis[u] + g[i].w) {
dis[g[i].v] = dis[u] + g[i].w;
pre[0][g[i].v] = u;
q.push(pii(dis[g[i].v], g[i].v));
}
}
}

inline void dfs1(int x) {
size[x] = 1;
for(int i = head[x]; ~i; i = g[i].next) {
depth[g[i].v] = depth[x] + 1;
dfs1(g[i].v);
size[x] += size[g[i].v];
if(size[g[i].v] > size[son[x]]) son[x] = g[i].v;
}
}

inline void dfs2(int x, int tp) {
top[x] = tp; id[x] = ++clo;
if(son[x]) dfs2(son[x], tp);
for(int i = head[x]; ~i; i = g[i].next) if(g[i].v ^ son[x])
dfs2(g[i].v, g[i].v);
}

inline int getlca(int u, int v) {
if(depth[u] < depth[v]) swap(u, v);
for(int i = maxk - 1; i >= 0; i--) if(depth[pre[i][u]] >= depth[v]) u = pre[i][u];
for(int i = maxk - 1; i >= 0; i--) if(pre[i][u] != pre[i][v]) u = pre[i][u], v = pre[i][v];
return u == v ? u : pre[0][u];
}

inline void pushup(int p) {
tr[p] = min(tr[p << 1], tr[p << 1 | 1]);
}

inline void pushdown(int p) {
if(tagv[p] != inf) {
tagv[p << 1] = min(tagv[p << 1], tagv[p]);
tagv[p << 1 | 1] = min(tagv[p << 1 | 1], tagv[p]);
tr[p << 1] = min(tr[p << 1], tagv[p]);
tr[p << 1 | 1] = min(tr[p << 1 | 1], tagv[p]);
tagv[p] = inf;
}
}

inline void modify(int p, int l, int r, int x, int y, int w) {
if(x <= l && r <= y) {
tr[p] = min(tr[p], w);
tagv[p] = min(tagv[p], w);
return;
}
int mid = l + r >> 1;
pushdown(p);
if(x <= mid) modify(p << 1, l, mid, x, y, w);
if(y > mid) modify(p << 1 | 1, mid + 1, r, x, y, w);
pushup(p);
}

inline int query(int p, int l, int r, int x) {
if(l == r && r == x) return tr[p];
int mid = l + r >> 1;
pushdown(p);
if(x <= mid) return query(p << 1, l, mid, x);
if(x > mid) return query(p << 1 | 1, mid + 1, r, x);
}

inline void modifychain(int lca, int u, int w) {
for(; top[lca] != top[u]; u = pre[0][top[u]])
modify(1, 1, clo, id[top[u]], id[u], w);
if(lca != u) modify(1, 1, clo, id[son[lca]], id[u], w);
}

int main() {
for(int i = 1; i <= n; i++) head[i] = -1; cnt = 0;
for(int i = 1; i <= m; i++) {
e[i] = (_data){u, v, w};
}
dijkstra();

for(int i = 1; i <= n; i++) head[i] = -1; cnt = 0;
for(int i = 2; i <= n; i++) add(pre[0][i], i, 0);

depth[1] = 1;
dfs1(1); dfs2(1, 1);
for(int j = 1; j < maxk; j++) for(int i = 1; i <= n; i++)
pre[j][i] = pre[j - 1][pre[j - 1][i]];
memset(tr, 0x3f, sizeof(tr));
memset(tagv, 0x3f, sizeof(tagv));

for(int i = 1; i <= m; i++) {
int u = e[i].u, v = e[i].v, w = e[i].w;
if(pre[0][u] != v && pre[0][v] != u) {
int lca = getlca(u, v);
modifychain(lca, v, dis[u] + w + dis[v]);
modifychain(lca, u, dis[v] + w + dis[u]);
}
}

for(int i = 2; i <= n; i++) {
int res = query(1, 1, clo, id[i]);
printf(res == inf ? "-1\n" : "%d\n", res - dis[i]);
}
return 0;
}


• 本文已收录于以下专栏：

## [bzoj1576] [Usaco2009 Jan]安全路经Travel

• DraZxlNDdt
• 2016年11月10日 16:26
• 403

## bzoj 1576: [Usaco2009 Jan]安全路经Travel（dijkstra堆优化+并查集）

1576: [Usaco2009 Jan]安全路经Travel Time Limit: 10 Sec  Memory Limit: 64 MB Submit: 968  Solved: 330 [Su...
• clover_hxy
• 2016年04月27日 16:24
• 218

## [Usaco2009 Jan]安全路经Travel dijkstra + 并查集

• sdj222555
• 2013年11月07日 11:35
• 1817

## BZOJ1576: [Usaco2009 Jan]安全路经Travel

• commonc
• 2016年09月07日 11:21
• 454

## 【最短路径树+可并堆/树链剖分】BZOJ1576 [Usaco2009 Jan]安全路经Travel

• 2017年05月11日 20:52
• 855

## BZOJ1576 [Usaco2009 Jan]安全路经Travel

• qwerty1125
• 2017年12月26日 16:51
• 499

## [BZOJ1576] [Usaco2009 Jan]安全路经Travel

• hzoi_ztx
• 2017年08月02日 22:52
• 85

## 【bzoj1576】[Usaco2009 Jan]安全路经Travel

• Owen_hzt
• 2015年11月02日 07:45
• 752

## 【BZOJ1576】【Usaco2009】安全路经Travel（树链剖分+dijkstra）

DescriptionInput 第一行: 两个空格分开的数, N和M 第2..M+1行: 三个空格分开的数a_i, b_i,和t_i Output 第1..N-1行: 第i行包含一个数:从牛棚_1到...
• mousemjq
• 2017年03月29日 19:56
• 170

## BZOJ 1576: [Usaco2009 Jan]安全路经Travel【最短路树】【树链剖分】

Description题解复习一下树链剖分。最短路树，非树边与树边形成的环上，除了LCA，其他的点都可以经过非树边，从所有答案中刷最小值，用树链剖分维护。代码#include #include #in...
• FYOIER
• 2017年11月02日 22:41
• 113

举报原因： 您举报文章：【BZOJ1576】[Usaco2009 Jan]安全路经Travel【最短路树】【树链剖分】【线段树】 色情 政治 抄袭 广告 招聘 骂人 其他 (最多只允许输入30个字)