关闭

【BZOJ1638】[Usaco2007 Mar]Cow Traffic 奶牛交通【DAG】【拓扑排序】【DP】

420人阅读 评论(0) 收藏 举报
分类:

【题目链接】

对于一条边(u, v),经过这条边的次数为(1到u的路径个数)*(v到n的路径个数)。

正反跑两次拓扑序,然后枚举边,统计答案。


一开始以为(1到u的路径个数)就是经过边(u, v)的次数,结果WA啦。

/* Telekinetic Forest Guard */
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <utility>

using namespace std;

typedef long long LL;
typedef pair<int, int> pii;

const int maxn = 5005, maxm = 50005;

int n, m, head[maxn], cnt, in[maxn], out[maxn], dp[maxn], dp2[maxn], q[maxn];

struct _edge {
	int v, next;
} g[maxm << 1];

pii e[maxm];

inline int iread() {
	int f = 1, x = 0; char ch = getchar();
	for(; ch < '0' || ch > '9'; ch = getchar()) f = ch == '-' ? -1 : 1;
	for(; ch >= '0' && ch <= '9'; ch = getchar()) x = x * 10 + ch - '0';
	return f * x;
}

inline void add(int u, int v) {
	g[cnt] = (_edge){v, head[u]};
	head[u] = cnt++;
}

int main() {
	n = iread(); m = iread();
	for(int i = 1; i <= n; i++) head[i] = -1; cnt = 0;
	for(int i = 1; i <= m; i++) {
		int u = iread(), v = iread();
		e[i] = pii(u, v);
		add(u, v); add(v, u); out[u]++; in[v]++;
	}

	int h = 0, t = 0;
	for(int i = 1; i <= n; i++) if(!in[i]) dp[q[t++] = i] = 1;
	while(h != t) {
		int u = q[h++];
		for(int i = head[u]; ~i; i = g[i].next) if(~i & 1) {
			dp[g[i].v] += dp[u];
			in[g[i].v]--;
			if(!in[g[i].v]) q[t++] = g[i].v;
		}
	}

	h = t = 0;
	for(int i = 1; i <= n; i++) if(!out[i]) dp2[q[t++] = i] = 1;
	while(h != t) {
		int u = q[h++];
		for(int i = head[u]; ~i; i = g[i].next) if(i & 1) {
			dp2[g[i].v] += dp2[u];
			out[g[i].v]--;
			if(!out[g[i].v]) q[t++] = g[i].v;
		}
	}

	int ans = 0;
	for(int i = 1; i <= m; i++) ans = max(ans, dp[e[i].first] * dp2[e[i].second]);
	printf("%d\n", ans);
	return 0;
}


0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:106179次
    • 积分:4818
    • 等级:
    • 排名:第6159名
    • 原创:392篇
    • 转载:0篇
    • 译文:0篇
    • 评论:48条
    膜拜神犇
    最新评论