机器学习2——python读写excel表格

原创 2015年11月17日 20:23:48

昨天看的书,太困了,没写


继续kNN算法,numpy函数库的几个方法

1. random.rand(4,3)随机生成一个4*3的矩阵

2. mat(random.rand(4,3))生成的是一个矩阵

3. a=mat(random.rand(4,3)), a.I 为矩阵A的逆矩阵

4. 直接生成一个矩阵 A = matrix([   [1,2,3],[4,3,5],[5,7,3]   ])

5.python读文件操作 fr = open() line = fr.readlines()

6.line.strip()去掉头部尾部的'\t' '\n' '\r' ' ' lstrip  和  rstrip分别是前头和后头

7.line.spliit 

#这是一个读写文件的算法,正好手里有个问卷调查的数据,因为是网络问卷,数据比较杂乱无章,想到是否可以用python提取有用数据放到excel表格里

</pre><pre name="code" class="python"><span style="font-family: 'Courier New'; background-color: rgb(255, 255, 255);">zeros是numpy的函数,创建一个矩阵 </span>
# -*- coding: utf-8 -*-
import xlrd
import xlwt

def read_write():
    data = xlrd.open_workbook('data.xls')
    table = data.sheets()[0]
    nrows = table.nrows
    ncols = table.ncols
    charm = [['help' for col in range(ncols-12)] for row in range(nrows)]
    lineList = []
    for i in range(nrows):
        lineList = table.row_values(i)
        charm[i] = lineList[13:48]
    workbook = xlwt.Workbook()
    s2 = workbook.add_sheet('s1')
    i = j = 0
    print '-------  nice---  reading is OK  --  '
    for row in charm:
        j=0
        for col in row:
            if j == 3:
                if col == 1.0:
                    col = u'男'
                else:
                    col = u'女'
            s2.write(i,j, col)
            j += 1
        i += 1
    workbook.save('ff23.xls')
read_write()









版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

Python机器学习及实践——简介篇2

这篇继续介绍一些概念。     任务:     机器学习的任务有很多,这里我们侧重于对两类经典的任务进行讲解和实践:监督学习和非监督学习。关于这两者的概念,不清楚的可以去看监督学习和非监督学习的区...

python读写excel表格脚本

  • 2017-03-23 10:19
  • 419B
  • 下载

python读写excel表格

xlrd和xlwt---Python操作excel

零基础使用Python读写处理Excel表格

零基础实例详细讲解如何使用Python第三方库处理Excel表格解放劳动力

【机器学习算法实现】kNN算法__手写识别——基于Python和NumPy函数库

kNN算法,即K最近邻(k-NearestNeighbor)分类算法,是最简单的机器学习算法之一,算法思想很简单:从训练样本集中选择k个与测试样本“距离”最近的样本,这k个样本中出现频率最高的类别即作...

机器学习深度学习基础笔记(2)——梯度下降之手写数字识别算法实现

该系列是笔者在机器学习深度学习系列课程学习过程中记录的笔记,简单粗暴,仅供参考。 下面的算法代码来自https://github.com/mnielsen/neural-networks-and-de...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)