【树的倍增】【二分 or LCA】USACO MAR11银组 聚会地点



题目

时间限制: 1 Sec 内存限制: 64 MB

题目描述

Bessie和Jon每天都要去他们所居住的小镇的某些地方游玩。有趣的是,他们居住的小镇是一个树的结构,也就意味是,小镇的每个地方之间有且仅有一条通路(不是指一条边,而是指一条通路),每个地方都会有且仅有一个父亲地点(除了小镇的城镇中心,它没有祖先)。
小镇共有N个地点(1 <= N <= 1,000),编号1~N。点1是镇的中心。
Bessie和Jon决定每天都要在游玩后见面,他们见面的地点总是在他们游玩的两个地方之间的那条通路中,离城镇中心最近的地方,下面给出他们的旅行日程,你需要帮他们每天的见面地点。
你可以理解为城镇中心就是成为在这个树结构上的根。

             [1]
            / | \
           /  |  \
         [2] [3] [6]
         /       / \
        /       /   \
      [4]      [8]  [9]
               / \
              /   \
            [5]   [7]

以下为他们某次见面的安排:

BessieJonMeeting Place
271
422
111
411
758
956
111

输入

第1行:两个数N,M代表一共有N个地方,B和J已经进行了M次见面
第2..N-1行,每行一个数X,代表第i个地点的父亲为X
再接下来M行,每行两个数,分别代表B和J当天准备去游玩的地方
1<=N<=1000,1<=M<=1000

输出

一共M行,每行一个数代表B和J当天见面的地方。

样例输入

9 6
1
1
2
8
1
8
6
6
2 7
4 2
3 3
4 1
7 5
9 5

样例输出

1
2
3
1
8
6

题目大意

尽管是中文,但是很长,说白了就是裸的LCA,给你一棵N个节点的树(根为1),M次询问,每次输出两个点的LCA。

LCA

LCA(Least Common Ancestors)是什么?即点的最近公共祖先
也就是说,对于点a,b,分别按照a到根的路径和b到根的路径寻找,路径上第一个重合的点即为它们的LCA,题目中已经列了表格说明,可自行参照图看。

倍增

下面这棵树用来举例:

概念

我不知道耶QAQ

定义

令数组f[i][j]表示第i个结点的第 2j 个祖先(父亲为第1个祖先,祖父为第2个祖先,以此类推),莫名想到树状数组……例如f[5][2]=1,f[8][1]=2。

预处理

方法

我们可以用 Θ(Nlog2N) 的时间预处理出这个数组(数组的大小也只有 N×log2N )。
f数组的递推式:

f[i][0]=father[i]
f[i][j]=f[f[i][j1]][j1]

第一个式子不解释,第二个式子:
我们都知道 2i1+2i1=2×2i1=2i
所以,“i的第 2i1 个祖先的 2i1 个祖先”就是i的第 2i 个祖先。

代码

for(int i=1;i<=N;i++)
    f[i][0]=fa[i];
for(int j=1;j<=LOG;j++)
    for(int i=1;i<=N;i++)
        f[i][j]=f[f[i][j-1]][j-1];

其中LOG为一个常数,显然是取 log2 MAXN ,例如这道题取 log2100010 ,当然只有在一条链的情况下才会有f[i][9]。

另外,j在外层,每次调用f[i][j]和f[i][j+1]的时间间隔很久,计算机的速度会变慢,所以也可以把f[i][j]的意义变为j的第 2i 个祖先。

操作1

概念

获取x的第k个祖先,通常称为getk操作。

方法

和二进制相关,需用到位运算,将k的二进制的每一位分离出来,对于第i位,如果为1,ans+=f[x][i]。

代码

for(int i=0;i<LOG;i++)
    if(k&(1<<i))
        x=f[x][i];
    return x;

操作2

概念

求x的深度为k的祖先,通常称为getd操作。

方法

显然,getd(x,k)=getk(x,dep[x]-k),其中dep[x]为x的深度。
dep可以在开始时用一次dfs初始化出来:

//c[i][j]表示i的第j个儿子,为vector
void dfs(int x,int s)//x为当前节点,s为当前深度
{
    int l=c[x].size();
    dep[x]=s;
    for(int i=0;i<l;i++)
        dfs(c[x][i],s+1);//儿子的深度比它多1
}
int main()
{
    dfs(1,0);//根的深度为0(或者1也行)
}

代码

int getd(int x,int k)
{
    return getk(x,dep[x]-k);
}




求LCA

纯暴力

方法

按照前面LCA的概念,我们想找5和8的LCA,分别列举它们到根的路径:
5 4 3 2 1
8 6 2 1
我们从后往前依次比对两个序列,直到找到不相同的一个,那么它的上一个就是两个点的LCA了。
1 1 same
2 2 same
3 6 different
4 8 …
5
发现第三个不同了,所以5和8的LCA就是第2行的结点,即结点2。

为什么不能从前往后找第一个相同的呢?从上面的数据就能看出,如果两个结点的深度不同,就会出问题,你在比较的时候必须比较同一深度的结点

代码

代码很容易实现,这里就不给了(。・ω・。),不要打我。

时间复杂度

容易得出 Θ(3×N) ,两个结点查找路径为2N,比对N,事实上常数3可以忽略,看做 Θ(N)

二分

方法

准确的说,应该是二分答案,我们二分LCA的深度。
设要求LCA的两个点是u和v(dep[u]≥dep[v]即u在),
显然LCA(u,v)的深度不会超过dep[v],
所以,二分的时候l=1,r=dep[v],

怎么验证答案是否正确呢?
令t=getd(u,dep[v])即u的祖先中与v的深度相同的一个。
设当前二分的答案为mid,很简单了:若getd(t,mid)=getd(v,mid),则mid一定符合条件,我们就应该找比mid更深的点,即l=mid+1。反之,则mid大了,r=mid-1。

代码

int BL(int u,int v)//二分真的是暴力哦
{
    if(dep[u]<dep[v]) swap(u,v);//保证dep[u]≥dep[v]
    int t=getd(u,dep[v]);
    if(t==v) return t;//注意处理同一个点的情况
    int l=1,r=dep[v];
    while(l<=r)
    {
        int mid=(l+r)>>1;
        if(getd(t,mid)==getd(v,mid)) l=mid+1;
        else r=mid-1;
    }
    return fa[getd(v,l)];//注意,二分跳出来后l和r都是不满足条件的,以l为例,l是mid+1,所以最后的答案是getd(v,l)的父亲
}

时间复杂度

二分为 Θ(log2N) ,每次验证为 Θ(log2N) ,所以总的时间复杂度就为 Θ(log2N2)

原汁原味的倍增

终于写到这里了,写这篇博客写了我1辈子o(▼皿▼メ;)o

方法

首先,还是要将u和v统一到深度,然后,令i从LOG开始枚举,一直到0,比较f[t][i]和f[v][i](t同二分里面的t),如果不同,就将t=f[t][i],v=f[v][i],为什么?我也不知道,但是就是觉得是对的= =,就这个feel。
大概讲一下我的感觉:枚举 2i ,且从大到小,是能够精确地枚举到每个点的,所以就这样了= =。

代码

int LCA(int u,int v)
{
    if(dep[u]<dep[v]) swap(u,v);
    int t=getd(u,dep[v]);
    if(t==v) return t;
    for(int i=LOG-1;i>=0;i--)
        if(f[t][i]!=f[v][i])
            t=f[t][i],v=f[v][i];
}

时间复杂度

i从LOG到0,显然时间复杂度为 Θ(log2N) ,已经很快啦,当然还有 Θ(1) 的办法,但是超级麻烦,只要用的不多, Θ(log2N) 足矣。

完整代码

即这道题的代码(二分和倍增两种方法):

#include<cstdio>
#include<vector>
#include<algorithm>
using namespace std;
int read()
{
    int x=0,f=1;char s=getchar();
    while(s<'0'||s>'9'){if(s=='-')f=-1;s=getchar();}
    while(s>='0'&&s<='9'){x=x*10+s-'0';s=getchar();}
    return x*f;
}
#define MAXN 1200
#define LOG 15
int dep[MAXN+5];
int fa[MAXN+5],f[MAXN+5][LOG+5];
int N,M;

vector<int> c[MAXN+5];

void initf()
{
    for(int i=1;i<=N;i++) f[i][0]=fa[i];
    for(int j=1;j<=LOG;j++)
        for(int i=1;i<=N;i++)
            f[i][j]=f[f[i][j-1]][j-1];
}

int getk(int x,int k)
{
    for(int i=0;i<LOG;i++)
        if(k&(1<<i))
            x=f[x][i];
    return x;
}

int getd(int x,int k)
{
    return getk(x,dep[x]-k);
}

void dfs(int x,int s)
{
    int l=c[x].size();
    dep[x]=s;
    for(int i=0;i<l;i++)
        dfs(c[x][i],s+1);
}

int BL(int u,int v)
{
    if(dep[u]<dep[v]) swap(u,v);
    int t=getd(u,dep[v]);
    if(t==v) return t;
    int l=1,r=dep[v];
    while(l<=r)
    {
        int mid=(l+r)>>1;
        if(getd(t,mid)==getd(v,mid)) l=mid+1;
        else r=mid-1;
    }
    return fa[getd(v,l)];
}

int LCA(int u,int v)
{
    if(dep[u]<dep[v]) swap(u,v);
    int t=getd(u,dep[v]);
    if(t==v) return t;
    for(int i=LOG-1;i>=0;i--)
        if(f[t][i]!=f[v][i])
            t=f[t][i],v=f[v][i];
    return fa[t];
}

int main()
{
    N=read(),M=read();
    for(int i=2;i<=N;i++)
        fa[i]=read(),c[fa[i]].push_back(i);
    initf();
    dfs(1,0);
    //for(int i=1;i<=N;i++) printf("dep[%d] = %d\n",i,dep[i]);
    while(M--)
    {
        int u=read(),v=read();
        //printf("%d\n",BL(u,v));
        printf("%d\n",LCA(u,v));
    }
}
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值