关闭

图像处理书籍笔记1--图像基本数据结构

标签: 图像处理计算机视觉
263人阅读 评论(0) 收藏 举报
分类:

计算机视觉的目的是寻找输入图像与真实世界之间的关系。由原始图像向模型的转换过程,图像信息逐渐压缩。在输入图像和模型之间,定义若干层次的视觉信息表示,计算机视觉由以下设计所组成:

1.中间表示(数据结构)。

2.创建这些中间表示所用的算法和它们之间关系的导入(算法)。

中间层一般可以表示成四个层次。按照从处于低层次抽象的信号开始到人能够感知的描述的顺序排列。

第一层:最低层的表示,称为图标图像,有原始的像素亮度数据的整数矩阵构成。为了后续图像处理,需要进行预处理(如:滤波或边缘锐化)

第二层:分割图像,图像被分割为可能属于同一物体的区域。

第三层:几何表示,保存2D和3D形状知识。例如,在做普通而复杂的有关实际物体受光照和运动影响的模拟时,几何表示是有用的。

第四层:图像数据表示的关系模型。涉及AI技术,利用一些先验知识,从图像中获得的信息可以表示成语义网络或框架。

传统图像图像数据结构

传统的数据结构有矩阵、链、图、物体属性表、关系数据库,这不仅直接表示图像重要的信息,而且还是更复杂的图像分层表示方法的基础。

矩阵:低层图像表示的最普通的数据结构,矩阵是图像的一个完整表示,与图像数据的内容无关,它隐含这图像组成部分之间的空间关系,这些图像组成部分在语义上具有重要性。在图像中,一个很重要的空间关系是相邻关系。矩阵中有大量的图像数据,因此需要大量的空间,因此如果首先从原始的图像矩阵得出全局信息,可以使算法上加速。两个比较好的全局信息的例子:直方图(一个图像的像素具有某个亮度的概率统计),共生矩阵(具有描述纹理的能力)。

            积分图像是另一种能够描述全局信息的矩阵表示方法。积分图像的构造方式是位置(i,j)处的值ii(i,j)是原图像(i,j)左上角所有像素的和。计算多个尺度的简单矩形图像特征,能够快速的在目标识别和目标跟踪上。

链:在计算机视觉中用于描述物体的边界。链适合组织成符号序列的数据,链中相邻的符号通常对应于图像中邻接的基元。有两种常用的编码方式:链码和行程编码。

拓扑数据结构:将图像描述成一组元素及其相互关系,这些关系通常用图结构来表示。区域图和区域邻接图。

关系结构: 关系数据库也可以用来表示从图像中得到的信息。

分层数据结构  ——  由于计算机视觉需要巨大的数据量,分层数据结构使一些特殊算法成为可能,这些算法在相对小的数据量的基础上决定处理策略。

金字塔:最简单的分层数据结构,有两种:M型金字塔(矩阵型金字塔)和T型金字塔(树形金字塔)。


1
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:745次
    • 积分:115
    • 等级:
    • 排名:千里之外
    • 原创:10篇
    • 转载:0篇
    • 译文:1篇
    • 评论:1条
    最新评论