关闭

完成端口(CompletionPort)详解

本系列里完成端口的代码在两年前就已经写好了,但是由于许久没有写东西了,不知该如何提笔,所以这篇文档总是在酝酿之中……酝酿了两年之后,终于决定开始动笔了,但愿还不算晚…..         这篇文档我非常详细并且图文并茂的介绍了关于网络编程模型中完成端口的方方面面的信息,从API的用法到使用的步骤,从完成端口的实现机理到实际使用的注意事项,都有所涉及,并且为了让朋友们更直观的体会完成端口的用法,本...
阅读(13) 评论(0)

IOCP的一些思考(粘包,断包的处理)

最近接触了IOCP服务器的编写,对IOCP有了自己的一些认识,希望能对希望正在使用IOCP 的有些建议。我对IOCP了解不多,只是用到了,所以看了一下,还没怎么熟悉。 IOCP的一大优势是高并发率,同时连接1万个用户,CPU的使用率也不会很高,只是内存稍微增大一些了。而且对CPU的利用率很好,线程的量被固定了,所以线程可以更好的处理事情。 [cpp] view plain ...
阅读(19) 评论(0)

支持向量机

本文将尝试对 SVMs 的工作方式进行更高层次的理解。我将更专注于培养直觉理解而不是严密性。这意味着会尽可能跳过数学细节而建立其工作方式的理论的直观理解。 自从Statsbot团队发表了关于time series anomaly detection, (时间序列的异常检测)的文章之后,很多读者要求我们介绍支持向量机方法。是时候满足你们的要求了,我将在不使用高深数学的前提下向你们介绍 SVM,分享...
阅读(37) 评论(0)

C++内存管理

[导语] 内存管理是C++最令人切齿痛恨的问题,也是C++最有争议的问题,C++高手从中获得了更好的性能,更大的自由,C++菜鸟的收获则是一遍一遍的检查代码和对C++的痛恨,但内存管理在C++中无处不在,内存泄漏几乎在每个C++程序中都会发生,因此要想成为C++高手,内存管理一关是必须要过的,除非放弃C++,转到Java或者.NET,他们的内存管理基本是自动的,当然你也放弃了自由和对内存的支...
阅读(486) 评论(0)

C#自定义值类型

既前两篇之后,这一篇我们讨论通过struct 关键字自定义值类型。 在第一篇已经讨论过值类型的优势,节省空间,不会触发Gargage Collection等等。 在对性能要求比较高的场景下,通过struct代替类是不错的选择。   那么,比如我们定义一个Point 类型,里面包含两个左边X, Y。 public struct Point { ...
阅读(53) 评论(0)

分布式数据库数据一致性原理说明与实现

1 数据一致性 1.1  数据一致性是什么 大部份使用传统关系型数据库的DBA在看到“数据一致性”时,第一反应可能都是数据在跨表事务中的数据一致性场景。但是本文介绍的“数据一致性”,指的是“数据在多份副本中存储时,如何保障数据的一致性”场景。 由于在大数据领域,数据的安全不再由硬件来保证,而是通过软件手段,通过同时将数据写入到多个副本中,...
阅读(120) 评论(0)

C++ string中的几个小陷阱

C++开发的项目难免会用到STL的string,使用管理都比char数组(指针)方便的多,但在得心应手的使用过程中也要警惕几个小陷阱,避免我们项目出bug却迟迟找不到原因。 1.  结构体中的string赋值问题 直接通过一个例子说明,下面的例子会输出什么: #include #include string> #include ...
阅读(64) 评论(0)

C++ 出现异常“.... \debug_heap.cpp Line:980 Expression:__acrt_first_block==header"

我的运行环境为VS2015+Opencv2.4.11  FindContours函数出现的调用异常问题如下:    错误:File: minkernel\crts\ucrt\src\appcrt\heap\debug_heap.cpp  Line: 980  Expression: __acrt_first_block == header  For information on how...
阅读(169) 评论(0)

基于图像的人数统计

基于图像的人数统计属于模式识别问题,可应用于安防领域。传统的方法包括:1)视频捕获;2)目标提取(背景建模、前景分析)——常见方法有高斯背景建模、帧差法、三帧差法等;3)目标识别(模式识别、特征点分析),如人脸识别,头肩部识别等,OpenCV里可以使用Hear特征、级联分类器来进行特征检测;4)目标跟踪——基本方法有直方图特征匹配和运动目标连续性匹配,OpenCV里可以使用CamShift算法直接...
阅读(58) 评论(0)

对卷积的理解

作者:鱼腻 链接:https://www.zhihu.com/question/22298352/answer/91131073 来源:知乎 著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。 关于卷积的一个血腥的讲解 比如说你的老板命令你干活,你却到楼下打台球去了,后来被老板发现,他非常气愤,扇了你一巴掌(注意,这就是输入信号,脉冲),于是你的脸上会渐渐地(贱...
阅读(43) 评论(0)

目标检测之LibPaBOD(a LIBrary for PArt-Based Object Detection in C++)

LibPaBOD是由Daniel Rodríguez Molina使用C++实现的DPM(P. Felzenszwalb的Discriminatively Trained Part Based Models)。代码基于opencv和MatIO实现,前者用于处理图像,后者用于读取.mat格式的训练模型文件。 1、准备工作 作者提供的windows下的可执行文件存档于\li...
阅读(64) 评论(0)

DPM(Defomable Parts Model) 源码分析-训练

DPM(Defomable Parts Model)原理 首先调用格式: example: pascal('person', 2);   % train and evaluate a 2 component person model pascal_train.m [cpp] view plain copy function model...
阅读(32) 评论(0)

DPM(Defomable Parts Model) 源码分析-检测(二)

DPM(Defomable Parts Model)原理 首先声明此版本为V3.1。因为和论文最相符。V4增加了模型数由2个增加为6个,V5提取了语义特征。源码太长纯代码应该在2K+,只选取了核心部分代码 demo.m [cpp] view plain copy function demo()      test('000034.jpg'...
阅读(48) 评论(0)

DPM(Deformable Parts Model)--原理(一)

DPM(Deformable Parts Model) Reference: Object detection with discriminatively trained partbased models. IEEE Trans. PAMI, 32(9):1627–1645, 2010. "Support Vector Machines for Multiple-Instance...
阅读(56) 评论(0)

通俗理解Bag-of-words模型入门

总括 Bag-of-words模型是信息检索领域常用的文档表示方法。 在信息检索中,BOW模型假定对于一个文档,忽略它的单词顺序和语法、句法等要素,将其仅仅看作是若干个词汇的集合,文档中每个单词的出现都是独立的,不依赖 于其它单词是否出现。(是不关顺序的) 也就是说,文档中任意一个位置出现的任何单词,都不受该文档语意影响而独立...
阅读(41) 评论(0)
961条 共65页1 2 3 4 5 ... 下一页 尾页
    个人资料
    • 访问:974834次
    • 积分:11357
    • 等级:
    • 排名:第1500名
    • 原创:75篇
    • 转载:884篇
    • 译文:2篇
    • 评论:48条
    最新评论