LightOJ 1005-Rooks

原创 2015年11月20日 21:17:40

题意:

给你一些皇后,问总共有多少种方法是的皇后之间互不攻击。
这题和八皇后有点类似,但是我们不能去爆搜,那样肯定会T。于是就要考虑动态规划。
dp[i][j]表示i*i的棋盘中放j个棋子的方法数。首先,如果i<j,那么答案就是0。
我们先考虑i*i的情况下,我们在他的右下角填一个角,那么肯定可以让这个正方形扩大一圈。在扩大的一圈之中。如果不放,dp[i+1][j]+=dp[i][j];如果只放一个,那么有dp[i+1][j+1]+=(2 * (i-j+1) -1)*dp[i][j];如果在多余的边角中放两个,肯定不能放在角落,dp[i][j+2]+=(i-j+1)* ( i-j+1)*dp[i][j];  

代码:

//
//  Created by  CQU_CST_WuErli
//  Copyright (c) 2015 CQU_CST_WuErli. All rights reserved.
//
// #include<bits/stdc++.h>
#include <iostream>
#include <cstring>
#include <cstdio>
#include <cstdlib>
#include <cctype>
#include <cmath>
#include <string>
#include <vector>
#include <list>
#include <map>
#include <queue>
#include <stack>
#include <set>
#include <algorithm>
#include <sstream>
#define CLR(x) memset(x,0,sizeof(x))
#define OFF(x) memset(x,-1,sizeof(x))
#define MEM(x,a) memset((x),(a),sizeof(x))
#define ALL(x) x.begin(),x.end()
#define AT(i,v) for (auto &i:v)
#define For_UVa if (kase!=1) cout << endl
#define BUG cout << "I am here" << endl
#define lookln(x) cout << #x << "=" << x << endl
#define look(x) cout << #x << "=" << x
#define SI(a) scanf("%d",&a)
#define SII(a,b) scanf("%d%d",&a,&b)
#define SIII(a,b,c) scanf("%d%d%d",&a,&b,&c)
#define Lson l,mid,rt<<1
#define Rson mid+1,r,rt<<1|1
#define Root 1,n,1
#define BigInteger bign
const int MAX_L=2005;// For BigInteger
const int INF_INT=0x3f3f3f3f;
const long long INF_LL=0x7fffffff;
const int MOD=1e9+7;
const double eps=1e-9;
const double pi=acos(-1);
typedef long long  ll;
using namespace std;

const int N=40;
int n,k;
ll dp[N][N];

void init() {
    CLR(dp);
    for (int i=1;i<=30;i++) dp[i][0]=1;
    dp[1][1]=1;
    for (ll i=2;i<=30;i++) {
        for (ll j=1;j<=i;j++) {
            dp[i][j]+=dp[i-1][j]+(2*(i-j)+1)*dp[i-1][j-1];
            if (j>=2) dp[i][j]+=(i-j+1)*(i-j+1)*dp[i-1][j-2];
        }
    }
}

int main(){
#ifdef LOCAL
    freopen("C:\\Users\\john\\Desktop\\in.txt","r",stdin);
//  freopen("C:\\Users\\john\\Desktop\\out.txt","w",stdout);
#endif
    int kase=1;
    init();
    int T_T;
    for (int kase=scanf("%d",&T_T);kase<=T_T;kase++) {
        scanf("%d%d",&n,&k);
        printf("Case %d: %lld\n",kase,dp[n][k]); 
    }
    return 0;
}
版权声明:欢迎转载,转载请注明出处http://blog.csdn.net/cquwel

LightOJ -kuangbin 数论

LightOJ数论题目小结题目这儿–[kuangbin]数学训练四 数论简单题解 LightOJ 1007 Mathematically Hard 因为数据样例比较多,所以进行预处理.至于欧拉函数可...
  • toudsour
  • toudsour
  • 2015年06月09日 16:22
  • 1714

LightOJ-1284 Lights inside 3D Grid (概率&计数)

J - Lights inside 3D Grid  LightOJ - 1284  题解:概率计数。因为是求期望值,考虑每个点对答案的贡献:对每个点是亮着的概率求和就是所求期...
  • qq_31759205
  • qq_31759205
  • 2017年01月22日 14:41
  • 235

LightOj-1245

Description I was trying to solve problem '1234 - Harmonic Number', I wrote the following code lon...
  • MBLHQ
  • MBLHQ
  • 2015年11月07日 19:18
  • 491

LightOJ1030(数学概率与期望)

题意: 有一个直线的金矿,每个点有一定数量的金子; 你从0开始,每次扔个骰子,扔出几点就走几步,然后把那个点的金子拿走; 如果扔出的骰子超出了金矿,就重新扔,知道你站在最后一个点; 问拿走金子...
  • yeyeyeguoguo
  • yeyeyeguoguo
  • 2015年06月04日 09:14
  • 915

LightOJ-1027

题意: 有n个门, 其中N1个门可以ji
  • u013534690
  • u013534690
  • 2014年04月15日 21:46
  • 787

LightOJ-1321 Sending Packets(期望+spfa)

M - Sending Packets  LightOJ - 1321  题意:给定一张无向图,每条边都有一个通过的概率 ,如果无法通过,那么就要回到起点重新出发 从起点...
  • qq_31759205
  • qq_31759205
  • 2017年01月24日 22:55
  • 307

LightOJ1370

欧拉函数简介: 欧拉函数用希腊字母φ表示,φ(N)表示N的欧拉函数. 对φ(N)的值,我们可以通俗地理解为小于N且与N互质的数的个数. 欧拉函数的一些性质: 1.欧拉函数是积性函数(乘性函数)...
  • SelinaFelton
  • SelinaFelton
  • 2016年07月14日 00:13
  • 404

LightOJ - 1265 Island of Survival 期望

题目大意:有一个生存游戏,里面t只老虎,d只鹿,还有一个人,每天都要有两个生物碰面,现在有以下规则 1.老虎和老虎碰面,两只老虎就会同归于尽 2.老虎和人碰面或者和人碰面,老虎都会吃掉对方 3....
  • L123012013048
  • L123012013048
  • 2015年06月05日 18:38
  • 880

LightOJ 1369 - Answering Queries(规律)

1369 - Answering Queries PDF (English) Statistics Forum Time...
  • zwj1452267376
  • zwj1452267376
  • 2015年11月11日 18:33
  • 531

LightOJ-1102-组合数学,逆元

题目大意:给定n,把它分成k分,可以为0,问有几种分法? 题目解析:想起了高中组合数学的隔板法,因为可以为0,所以不妨再给n加上k,这样分成k分就最少是一个了,所以答案就是C(n+k-1,k-1),...
  • zyz_3_14159
  • zyz_3_14159
  • 2016年11月29日 17:53
  • 109
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:LightOJ 1005-Rooks
举报原因:
原因补充:

(最多只允许输入30个字)