LightOJ 1005-Rooks

原创 2015年11月20日 21:17:40

题意:

给你一些皇后,问总共有多少种方法是的皇后之间互不攻击。
这题和八皇后有点类似,但是我们不能去爆搜,那样肯定会T。于是就要考虑动态规划。
dp[i][j]表示i*i的棋盘中放j个棋子的方法数。首先,如果i<j,那么答案就是0。
我们先考虑i*i的情况下,我们在他的右下角填一个角,那么肯定可以让这个正方形扩大一圈。在扩大的一圈之中。如果不放,dp[i+1][j]+=dp[i][j];如果只放一个,那么有dp[i+1][j+1]+=(2 * (i-j+1) -1)*dp[i][j];如果在多余的边角中放两个,肯定不能放在角落,dp[i][j+2]+=(i-j+1)* ( i-j+1)*dp[i][j];  

代码:

//
//  Created by  CQU_CST_WuErli
//  Copyright (c) 2015 CQU_CST_WuErli. All rights reserved.
//
// #include<bits/stdc++.h>
#include <iostream>
#include <cstring>
#include <cstdio>
#include <cstdlib>
#include <cctype>
#include <cmath>
#include <string>
#include <vector>
#include <list>
#include <map>
#include <queue>
#include <stack>
#include <set>
#include <algorithm>
#include <sstream>
#define CLR(x) memset(x,0,sizeof(x))
#define OFF(x) memset(x,-1,sizeof(x))
#define MEM(x,a) memset((x),(a),sizeof(x))
#define ALL(x) x.begin(),x.end()
#define AT(i,v) for (auto &i:v)
#define For_UVa if (kase!=1) cout << endl
#define BUG cout << "I am here" << endl
#define lookln(x) cout << #x << "=" << x << endl
#define look(x) cout << #x << "=" << x
#define SI(a) scanf("%d",&a)
#define SII(a,b) scanf("%d%d",&a,&b)
#define SIII(a,b,c) scanf("%d%d%d",&a,&b,&c)
#define Lson l,mid,rt<<1
#define Rson mid+1,r,rt<<1|1
#define Root 1,n,1
#define BigInteger bign
const int MAX_L=2005;// For BigInteger
const int INF_INT=0x3f3f3f3f;
const long long INF_LL=0x7fffffff;
const int MOD=1e9+7;
const double eps=1e-9;
const double pi=acos(-1);
typedef long long  ll;
using namespace std;

const int N=40;
int n,k;
ll dp[N][N];

void init() {
    CLR(dp);
    for (int i=1;i<=30;i++) dp[i][0]=1;
    dp[1][1]=1;
    for (ll i=2;i<=30;i++) {
        for (ll j=1;j<=i;j++) {
            dp[i][j]+=dp[i-1][j]+(2*(i-j)+1)*dp[i-1][j-1];
            if (j>=2) dp[i][j]+=(i-j+1)*(i-j+1)*dp[i-1][j-2];
        }
    }
}

int main(){
#ifdef LOCAL
    freopen("C:\\Users\\john\\Desktop\\in.txt","r",stdin);
//  freopen("C:\\Users\\john\\Desktop\\out.txt","w",stdout);
#endif
    int kase=1;
    init();
    int T_T;
    for (int kase=scanf("%d",&T_T);kase<=T_T;kase++) {
        scanf("%d%d",&n,&k);
        printf("Case %d: %lld\n",kase,dp[n][k]); 
    }
    return 0;
}
版权声明:欢迎转载,转载请注明出处http://blog.csdn.net/cquwel

相关文章推荐

lightoj 1005 - Rooks

题目链接:http://lightoj.com/volume_showproblem.php?problem=1005                                         ...

LightOJ 1005 - Rooks(组合数学解法,记忆化解法)

题意:相当于在一个n*n的棋盘上放k个车,并且互相不能吃,问有几种方法 组合数学 分析:任意两个不能同行不能同列,转换到线段上就是n行中选k行,n列中选k列,转换到二维就是将它们相乘 那么就是  ...
  • HHH_go_
  • HHH_go_
  • 2017年07月22日 17:40
  • 217

LightOJ 1005 Rooks 动态规划dp || 组合数学

题目:http://www.lightoj.com/volume_showproblem.php?problem=1005 题意:给定一个n * n的棋盘,往上面放k个棋子,棋子可以攻击所在的行或列...

每日刷题:lightoj 1005 - Rooks

#include #include #include #include long long solve(int N) { int K=0; scanf("%d",&K); ...

LightOJ1005---Rooks(简单组合数学)

A rook is a piece used in the game of chess which is played on a board of square grids. A rook can o...

LightOJ 1005 - Rooks (dp、组合数学)

题意: n∗n(n≤30)的棋盘放置k个互相无法攻击的车的 方法数,答案保证不爆LLn*n(n \leq 30)的棋盘放置k个互相无法攻击的车的\ 方法数, 答案保证不爆LL 分析: k>n...
  • lwt36
  • lwt36
  • 2015年10月27日 18:02
  • 195

light1005 - Rooks【排列组合】

1005 - Rooks PDF (English) Statistics Forum Time Limit: 1 second(s) M...

LIGHTOJ 1005

A - LIGHTOJ 1005 Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%lld & %llu Submit...

SGU - 222 - Little Rooks (组合数)

222. Little Rooks time limit per test: 0.25 sec. memory limit per test: 65536 KB input: sta...

UVa OJ 11134 - Fabled Rooks

UVa OJ 11134 - Fabled RooksProblem  在n*n的棋盘上放n(n≤5000)个车,使得任意两个车不相互攻击,且第i个 车在一个给定的矩形Ri之内。用4个整数xli, y...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:LightOJ 1005-Rooks
举报原因:
原因补充:

(最多只允许输入30个字)