LightOJ 1018 - Brush (IV)

原创 2015年11月20日 21:54:50

题意:

题意就是给一些点,问最少要连几条线,可以将这些点全部覆盖。
典型的状压dp
用line[i][j]表示在直线i,j上的点。
这样,dp[s]表示当前状态为s时,最少需要的次数。具体的剪枝是这样的。因为i和j是肯定要覆盖的,所以,每次能够找到一个可以覆盖的点,覆盖了就可以继续往下,然后跳出。具体看代码。
//
//  Created by  CQU_CST_WuErli
//  Copyright (c) 2015 CQU_CST_WuErli. All rights reserved.
//
// #include<bits/stdc++.h>
#include <iostream>
#include <cstring>
#include <cstdio>
#include <cstdlib>
#include <cctype>
#include <cmath>
#include <string>
#include <vector>
#include <list>
#include <map>
#include <queue>
#include <stack>
#include <set>
#include <algorithm>
#include <sstream>
#define CLR(x) memset(x,0,sizeof(x))
#define OFF(x) memset(x,-1,sizeof(x))
#define MEM(x,a) memset((x),(a),sizeof(x))
#define ALL(x) x.begin(),x.end()
#define AT(i,v) for (auto &i:v)
#define For_UVa if (kase!=1) cout << endl
#define BUG cout << "I am here" << endl
#define lookln(x) cout << #x << "=" << x << endl
#define look(x) cout << #x << "=" << x
#define SI(a) scanf("%d",&a)
#define SII(a,b) scanf("%d%d",&a,&b)
#define SIII(a,b,c) scanf("%d%d%d",&a,&b,&c)
#define Lson l,mid,rt<<1
#define Rson mid+1,r,rt<<1|1
#define Root 1,n,1
#define BigInteger bign
const int MAX_L=2005;// For BigInteger
const int INF_INT=0x3f3f3f3f;
const long long INF_LL=0x7fffffff;
const int MOD=1e9+7;
const double eps=1e-9;
const double pi=acos(-1);
typedef long long  ll;
using namespace std;

struct P{
    int x,y;
};
P p[20];
int n;
int dp[1<<20];
int line[20][20];

bool Online(P& a,P& b,P& c) {
    return (b.x-a.x)*(c.y-a.y)-(b.y-a.y)*(c.x-a.x)==0;
}

int dfs(int st) {
    if (dp[st]!=-1) return dp[st];
    dp[st]=INF_INT;
    int cnt=0;
    for (int i=1;i<=n;i++) if (st&(1<<i)) cnt++;
    if (cnt==0) return dp[st]=0;
    if (cnt<=2) return dp[st]=1;
    for (int i=1;i<=n;i++) {
        if (st&(1<<i)) {
            for (int j=i+1;j<=n;j++) {
                if (st&(1<<j)) {
                    dp[st]=min(dp[st],dfs(st-(st&line[i][j]))+1);
                }// st-(st&line[i][j])是吧这个集合中一些元素减掉
            }
            break;  // 这里不跳出就会T
        }
    }
    return dp[st];
}

int main(){
#ifdef LOCAL
    freopen("C:\\Users\\john\\Desktop\\in.txt","r",stdin);
//  freopen("C:\\Users\\john\\Desktop\\out.txt","w",stdout);
#endif
    int T_T;
    for (int kase=scanf("%d",&T_T);kase<=T_T;kase++) {
        cin >> n;
        for (int i=1;i<=n;i++) cin >> p[i].x >> p[i].y;
        OFF(dp);CLR(line);
        for (int i=1;i<=n;i++) {
            for (int j=i+1;j<=n;j++) {
                for (int k=1;k<=n;k++) {
                    if (Online(p[i],p[j],p[k])) line[i][j]|=(1<<k);
                }
            }
        }
        int ans=dfs((1<<(n+1))-1);
        cout << "Case " << kase << ": " << ans << endl;
    }
    return 0;
}
版权声明:欢迎转载,转载请注明出处http://blog.csdn.net/cquwel

相关文章推荐

lightoj1018 - Brush (IV) - 状压DP

lightoj1018 状压DP

[LightOJ 1018]Brush (IV)[状压DP]

题目链接:http://lightoj.com/volume_showproblem.php?problem=1018 题意分析:平面上有不超过N个点,现在可以任意方向划直线将它们划去,问:最少要划...

lightoj 1018 - Brush (IV) 状压DP

有n个点,问可以用几条直线将所有点划去。 n是16,DP分类,很容易想到状压DP。dp[i]代表二进制状态下划去的点的集合下所需要的直线数量。 然后我们考虑的是加新的一条直线的情况下会划去那些点。...

lightoj1018 - Brush (IV)【状压dp】

1018 - Brush (IV)     PDF (English) Statistics Forum Time Limit: 2 seco...

lightoj 1018 - Brush (IV)

题目链接:http://lightoj.com/volume_showproblem.php?problem=1018 题意分析:二分平面上有N个点,现在有一把可沿着任何方向走的刷子可以刷去这些点,...

lightoj 1018 brush(四)(状压DP)

1018 - Brush (IV) PDF (English) Statistics Forum Time Limit: ...

lightoj 1017 - Brush (III)

题目链接:http://lightoj.com/volume_showproblem.php?problem=1017                                    ...

LightOJ 1019-Brush (V)【最短路,模板题】

Tanvir returned home from the contest and got angry after seeing his room dusty. Who likes to see a ...

LightOJ 1017 Brush (III) 【DP】

题目链接题意墙上有N个污点,知道它们的坐标(xi,yi)。现有一把宽度为w的刷子,将刷子固定在一个高度就可以沿着平行于x轴的方向刷除污点。总操作次数最多为k,求最多能够刷除掉多少污渍分析我们以刷子底部...
  • DrCarl
  • DrCarl
  • 2016年08月09日 15:31
  • 246

LightOJ 1017 Brush (III) (DP)

题目链接:http://lightoj.com/volume_showproblem.php?problem=1017 题意:坐标系里有n个点,一个宽度为w的刷子可以擦去这些点(边缘擦到也算),刷子...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:LightOJ 1018 - Brush (IV)
举报原因:
原因补充:

(最多只允许输入30个字)