LightOJ 1031-Easy Game

原创 2015年11月20日 23:15:38

题意:

给你一个数列,每次可以从左边或者右边去一串连续的数字,并且获得所有数字和的分数,两个人轮流取,A先手,B后手,问最后A最多能比B多多少分。
很明显的区间dp,但是又有一些博弈在里面。
dp[i][j]表示从ij,能多拿的分数。
转移方程是这样的:
    for (int i=l;i<=r;i++) ans=max(ans,sum[i]-sum[l-1]-dp[i=1][r]);
    for (int i=r;i>=l;i--) ans=max(ans,sum[r]-sum[i-1]-dp[l,i-1]);
    为什么这样是正确的,我们来看,在当前状态下,我们有两个选择,
从左边那一串或者从右边拿一串,假设现在是A来拿,那么拿了之后,
暂且比B多了一段连续的分数,但是接下来又会轮到B拿,在回到这
个状态之后,B会比A多拿一些,然后就用A暂时多拿的减去B比A多拿的,
就是A比B多拿的分数。
也许有点绕,多想想就懂了。具体看代码。

代码:

//
//  Created by  CQU_CST_WuErli
//  Copyright (c) 2015 CQU_CST_WuErli. All rights reserved.
//
// #include<bits/stdc++.h>
#include <iostream>
#include <cstring>
#include <cstdio>
#include <cstdlib>
#include <cctype>
#include <cmath>
#include <string>
#include <vector>
#include <list>
#include <map>
#include <queue>
#include <stack>
#include <set>
#include <algorithm>
#include <sstream>
#define CLR(x) memset(x,0,sizeof(x))
#define OFF(x) memset(x,-1,sizeof(x))
#define MEM(x,a) memset((x),(a),sizeof(x))
#define ALL(x) x.begin(),x.end()
#define AT(i,v) for (auto &i:v)
#define For_UVa if (kase!=1) cout << endl
#define BUG cout << "I am here" << endl
#define lookln(x) cout << #x << "=" << x << endl
#define look(x) cout << #x << "=" << x
#define SI(a) scanf("%d",&a)
#define SII(a,b) scanf("%d%d",&a,&b)
#define SIII(a,b,c) scanf("%d%d%d",&a,&b,&c)
#define Lson l,mid,rt<<1
#define Rson mid+1,r,rt<<1|1
#define Root 1,n,1
#define BigInteger bign
template <typename T> T max(T& a,T& b) {return a>b?a:b;}
template <typename T> T min(T& a,T& b) {return a<b?a:b;}
int gcd(int a,int b) {return b==0?a:gcd(b,a%b);}
long long gcd (long long a,long long b) {return b==0LL?a:gcd(b,a%b);}
const int MAX_L=2005;// For BigInteger
const int INF_INT=0x3f3f3f3f;
const long long INF_LL=0x7fffffff;
const int MOD=1e9+7;
const double eps=1e-9;
const double pi=acos(-1);
typedef long long  ll;
using namespace std;

const int N=110;
int dp[N][N];
int n;
int a[N];
int sum[N];

int dfs(int l,int r) {
    if (l==r) return a[l];
    if (l>r) return 0;
    int &ans=dp[l][r];
    if (ans!=-1) return ans;
    ans=-INF_INT;
    for (int i=l;i<=r;i++) ans=max(ans,sum[i]-sum[l-1]-dfs(i+1,r));
    for (int i=r;i>=l;i--) ans=max(ans,sum[r]-sum[i-1]-dfs(l,i-1));
    return ans;
}

int main(){
#ifdef LOCAL
    freopen("C:\\Users\\john\\Desktop\\in.txt","r",stdin);
//  freopen("C:\\Users\\john\\Desktop\\out.txt","w",stdout);
#endif
    int T_T;
    for (int kase=scanf("%d",&T_T);kase<=T_T;kase++) {
        cin >> n;
        CLR(sum);
        for (int i=1;i<=n;i++) {
            cin >> a[i];
            sum[i]=sum[i-1]+a[i];           
        }
        OFF(dp);
        int ans=dfs(1,n);
        cout << "Case " << kase << ": " << ans << endl;
    }
    return 0;
}
版权声明:欢迎转载,转载请注明出处http://blog.csdn.net/cquwel

相关文章推荐

lightoj 1031 - Easy Game

区间dp; 这道题我是在看了几份阶梯报告之后才想通的,现在想想很符合动态规划的要求 d(i, j)表示取数的人在数组i 到 j中能取的的最大值,然后中间枚举分割点,       ans = ma...

LightOJ 1031 - Easy Game (区间dp)

题意: n<=100的整数序列,A和B轮流取数,每个人只能从左端或者右端取任意数量的数n<=100的整数序列, A和B轮流取数, 每个人只能从左端或者右端取任意数量的数 A先手,所有数取完游...
  • lwt36
  • lwt36
  • 2015-11-13 16:40
  • 196

LightOJ 1031 Easy Game(区间DP)

题意:A,B轮流从左或从右以最优策略选出连续的几个数,直至选完,求两人所选数和差的最小值。 思路:dp[i][j]表示先手者A选区间[i, j]的最优策略和。A要让B得到的和最小,所以先求出让B最优策...

LightOJ 1031 Easy Game--区间dp

原题链接:http://vjudge.net/problem/LightOJ-1031 题意:n个数,两个人A和B每次从头部或尾部取出若干个数,直到取完,最后 ’A取出数和‘ 减去 ‘B取出...

lightoj 1031 - Easy Game 【区间dp】360 2017笔试编程题3

题意:两个小孩轮流从一段数字的左边或者右边取走连续的一段,问先手比后手最多多得多少分 尼玛,区间dp居然还有这么玩的==我们可以想到这种题都是小区间合并成大区间的,然而这种类似于博弈的做法实在是让人...

lightoj 1031 Easy Game (区间dp 博弈)

lightoj 1031 Easy Game (区间dp 博弈)

Light OJ 1031 Easy Game 区间DP

题目描述:Description You are playing a two player game. Initially there are n integer numbers in an arr...

LightOJ-1031 博弈 区间DP

1031 - Easy Game     PDF (English) Statistics Forum Time Limit: 2 secon...

lightoj 1031【区间DP】

题意: 给你一个n,再给你n个数,每个数<1e4; 有两个player交替取数字,每个人每一次能拿一个或多个,交替在两边拿。 游戏终止在所有的数字被取完。 两个人的分数就是所取得的数字大小总和...

LightOJ 1110 An Easy LCS LCS路径输出

点击打开链接题目链接 1110 - An Easy LCS PDF (English) Statistics Forum Time L...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)