关闭

SDAU 练习三 1008 穿越大魔王的幽谷的问题

标签: 动态规划
267人阅读 评论(0) 收藏 举报
分类:

Problem H

Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 32768/32768K (Java/Other)
Total Submission(s) : 114   Accepted Submission(s) : 39
Problem Description
穿过幽谷意味着离大魔王lemon已经无限接近了!<br>可谁能想到,yifenfei在斩杀了一些虾兵蟹将后,却再次面临命运大迷宫的考验,这是魔王lemon设下的又一个机关。要知道,不论何人,若在迷宫中被困1小时以上,则必死无疑!<br>可怜的yifenfei为了去救MM,义无返顾地跳进了迷宫。让我们一起帮帮执着的他吧!<br>命运大迷宫可以看成是一个两维的方格阵列,如下图所示:<br><img src=../../../data/images/C164-1005-1.jpg> <br>yifenfei一开始在左上角,目的当然是到达右下角的大魔王所在地。迷宫的每一个格子都受到幸运女神眷恋或者痛苦魔王的诅咒,所以每个格子都对应一个值,走到那里便自动得到了对应的值。<br>现在规定yifenfei只能向右或者向下走,向下一次只能走一格。但是如果向右走,则每次可以走一格或者走到该行的列数是当前所在列数倍数的格子,即:如果当前格子是(x,y),下一步可以是(x+1,y),(x,y+1)或者(x,y*k) 其中k&gt;1。 <br>为了能够最大把握的消灭魔王lemon,yifenfei希望能够在这个命运大迷宫中得到最大的幸运值。<br><img src=../../../data/images/C164-1005-2.jpg><br>
 

Input
输入数据首先是一个整数C,表示测试数据的组数。<br>每组测试数据的第一行是两个整数n,m,分别表示行数和列数(1<=n<=20,10<=m<=1000);<br>接着是n行数据,每行包含m个整数,表示n行m列的格子对应的幸运值K ( |k|<100 )。<br>
 

Output
请对应每组测试数据输出一个整数,表示yifenfei可以得到的最大幸运值。
 

Sample Input
1 3 8 9 10 10 10 10 -10 10 10 10 -11 -1 0 2 11 10 -20 -11 -11 10 11 2 10 -10 -10
 

Sample Output
52

简单题意:

     就是穿越一个峡谷,有许多格子,并且每一个格子上都有对应的数字,走出后求出最大值的走法所能加的总值和。。。


简单思路:

          递推公式为“dp[i][j] = max(dp[i-1][j],dp[i][j-1],dp[i][k]) + da[i][j]。”dp[i][j]是男猪脚到达i 格j 行所最大的幸运值。。da[i][j]为哪一格的幸运值,,,,这个也就是一个简单的动态规划问题啦。。。。。。


ACID:00775134


代码如下:

#include<iostream>
#include<cmath>
#include<cstring>
#include<cstdio>
using namespace std;
int a[251][10010];
int pao[100][10010];
int main()
{
    int t;
    cin>>t;

    while(t--)
    {
        int n,m;
        memset(a,0,sizeof(a));
        cin>>n>>m;
        int i,j;
        int x;
        for(i=1;i<=n;i++)
        {
            for(j=1;j<=m;j++)
            {
                cin>>a[i][j];
            }
        }
        for(i=0;i<=m;i++)
        {
            pao[0][i]=-99999;
        }
        for(i=0;i<=n;i++)
        {
            pao[i][0]=-99999;
        }
        pao[0][1]=0;pao[1][0]=0;
        int max1=-100000;
        for(i=1;i<=n;i++)
        {
            for(j=1;j<=m;j++)
            {
              max1=max(pao[i-1][j],pao[i][j-1]);
            for(x=1;x<j-1;x++)
              {
                 if(j%x==0)
                 {
                     if(max1<pao[i][x])
                     {
                         max1=pao[i][x];
                     }
                 }
              }
             pao[i][j]=max1+a[i][j];

            }
        }
        cout<<pao[n][m]<<endl;
    }
    return 0;
}



0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:85289次
    • 积分:1823
    • 等级:
    • 排名:千里之外
    • 原创:98篇
    • 转载:18篇
    • 译文:0篇
    • 评论:33条
    最新评论