228人阅读 评论(0)

# Monkey King

Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 2543    Accepted Submission(s): 1064

Problem Description
Once in a forest, there lived N aggressive monkeys. At the beginning, they each does things in its own way and none of them knows each other. But monkeys can't avoid quarrelling, and it only happens between two monkeys who does not know each other. And when it happens, both the two monkeys will invite the strongest friend of them, and duel. Of course, after the duel, the two monkeys and all of there friends knows each other, and the quarrel above will no longer happens between these monkeys even if they have ever conflicted.

Assume that every money has a strongness value, which will be reduced to only half of the original after a duel(that is, 10 will be reduced to 5 and 5 will be reduced to 2).

And we also assume that every monkey knows himself. That is, when he is the strongest one in all of his friends, he himself will go to duel.

Input
There are several test cases, and each case consists of two parts.

First part: The first line contains an integer N(N<=100,000), which indicates the number of monkeys. And then N lines follows. There is one number on each line, indicating the strongness value of ith monkey(<=32768).

Second part: The first line contains an integer M(M<=100,000), which indicates there are M conflicts happened. And then M lines follows, each line of which contains two integers x and y, indicating that there is a conflict between the Xth monkey and Yth.

Output
For each of the conflict, output -1 if the two monkeys know each other, otherwise output the strongness value of the strongest monkey in all friends of them after the duel.

Sample Input
5
20
16
10
10
4
5
2 3
3 4
3 5
4 5
1 5

Sample Output
8
5
5
-1
10

Author
JIANG, Yanyan

Source

Recommend
linle

1. #include <iostream>
2. #include<cstdio>
3. #include<cstring>
4. #include<algorithm>
5. using namespace std;
6. const int N = 100005;
7. int m,n;
8. int set[N];
9. struct node
10. {
11.     int l,r,dis,key;
12. }tree[N];
13.
14. int find(int a)
15. {
16.     int root = a;
17.     while(root != set[root])
18.         root = set[root];
19.     int parent = set[a];
20.     while(parent != root)//路径压缩
21.     {
22.         set[a] = root;
23.         a = parent;
24.         parent = set[a];
25.     }
26.     return root;
27. }
28.
29. int merge(int a,int b)
30. {
31.     if(!a)
32.         return b;
33.     if(!b)
34.         return a;
35.     if(tree[a].key < tree[b].key)//大堆
36.         swap(a,b);
37.     tree[a].r = merge(tree[a].r,b);
38.     set[tree[a].r] = a;//并查
39.     if(tree[tree[a].l].dis < tree[tree[a].r].dis)
40.         swap(tree[a].l,tree[a].r);
41.     if(tree[a].r)
42.         tree[a].dis = tree[tree[a].r].dis + 1;
43.     else
44.         tree[a].dis = 0;
45.     return a;
46. }
47.
48. int pop(int a)
49. {
50.     int l = tree[a].l;
51.     int r = tree[a].r;
52.     set[l] = l;//因为要暂时删掉根，所以左右子树先作为根
53.     set[r] = r;
54.     tree[a].l = tree[a].r = tree[a].dis = 0;
55.     return merge(l,r);
56. }
57.
58. int nextint()
59. {
60.     char c;
61.     int ret = 0;
62.     while((c = getchar()) > '9' || c < '0')
63.         ;
64.     ret = c - '0';
65.     while((c = getchar()) >= '0' && c <= '9')
66.         ret = ret * 10 + c - '0';
67.     return ret;
68. }
69.
70. void print(int a)
71. {
72.     if(!a)
73.         return;
74.     print(a/10);
75.     putchar(a%10 + '0');
76. }
77.
78. int main()
79. {
80.     int a,b,i;
81.     while(~scanf("%d",&n))
82.     {
83.         for(i = 1;i <= n;i ++)
84.         {
85.             //scanf("%d",&tree[i].key);
86.             tree[i].key = nextint();
87.             set[i] = i;
88.             tree[i].l = tree[i].r = tree[i].dis = 0;
89.         }
90.        // scanf("%d",&m);
91.         m = nextint();
92.         while(m --)
93.         {
94.             //scanf("%d%d",&a,&b);
95.             a = nextint();
96.             b = nextint();
97.             int ra = find(a);
98.             int rb = find(b);
99.             //printf("%d  %d\n",ra,rb);
100.             if(ra == rb)
101.                 printf("-1\n");
102.             else
103.             {
104.                 int rra = pop(ra);//ra左右子树合并
105.                 tree[ra].key /= 2;
106.                 ra = merge(rra,ra);//重新插入ra 找到合适的位置
107.                 int rrb = pop(rb);
108.                 tree[rb].key /= 2;
109.                 rb = merge(rrb,rb);
110.                 print(tree[merge(ra,rb)].key);
111.                 putchar(10);
112.                 //printf("%d\n",tree[merge(ra,rb)].key);
113.             }
114.         }
115.     }
116.     return 0;
117. }
118. //703MS 2244K  无优化
119. //250MS 2184K  输入优化
120. //203MS 2184K  输入输出优化
0
0

* 以上用户言论只代表其个人观点，不代表CSDN网站的观点或立场
个人资料
• 访问：4139次
• 积分：266
• 等级：
• 排名：千里之外
• 原创：23篇
• 转载：2篇
• 译文：0篇
• 评论：1条
阅读排行
评论排行
最新评论