MXNet官方文档教程(3):基于多层LSTM的字符级语言模型

这是MXNet继上一篇我们介绍的人工神经网络识别手写数字之后另一个进阶(Advanced)示例,本文使用了最新的LSTM模型。由于本人对自然语言处理方向并无深入了解,故只进行了简单的直译,具体细节术语可查看相关文献及源网站:Character-level language models


本教程讲授如何通过多层循环人工神经网络来训练一个字符级的语言模型。特别的,我们将训练了一个可以识别美国总统奥巴马演讲的多层LSTM网络。

 

数据准备

我们首先现在数据集并输出前面一部分字符。

import os

import urllib

import zipfile

if not os.path.exists("char_lstm.zip"):

    urllib.urlretrieve("http://data.mxnet.io/data/char_lstm.zip","char_lstm.zip")

with zipfile.ZipFile("char_lstm.zip","r")as f:

    f.extractall("./")    

with open('obama.txt','r') as f:

    print f.read()[0:1000]

输出结果:

Call to Renewal Keynote Address Call to Renewal Pt 1Call to Renewal Part 2 TOPIC: Our Past, Our Future & Vision for America June 
28, 2006 Call to Renewal' Keynote Address Complete Text Good morning. I appreciate the opportunity to speak here at the Call to R
enewal's Building a Covenant for a New America conference. I've had the opportunity to take a look at your Covenant for a New Ame
rica. It is filled with outstanding policies and prescriptions for much of what ails this country. So I'd like to congratulate yo
u all on the thoughtful presentations you've given so far about poverty and justice in America, and for putting fire under the fe
et of the political leadership here in Washington.But today I'd like to talk about the connection between religion and politics a
nd perhaps offer some thoughts about how we can sort through some of the often bitter arguments that we've been seeing over the l
ast several years.I do so because, as you all know, we can affirm the importance of povert

之后,我们定义了一些函数来对这些数据进行预处理。

def read_content(path):
    with open(path)as ins:        
        return ins.read()
    
# Return a dict which maps each char into an unique int id
def build_vocab(path):
    content =list(read_content(path))
    idx =1# 0 is left for zero-padding
    the_vocab = {}
    for word in content:
        if len(word)==0:
            continue
        if not word in the_vocab:
            the_vocab[word] = idx
            idx +=1
    return the_vocab
 
# Encode a sentence with int ids
def text2id(sentence, the_vocab):
    words =list(sentence)
    return [the_vocab[w] for w in words if len(w)>0]
            
# build char vocabluary from input
vocab= build_vocab("./obama.txt")
print('vocab size = %d'%(len(vocab)))

输出:

vocab size = 83

建立LSTM模型

现在我们建立一个多层LSTM模型。LSTM单元定义的实现在lstm.py中:

import lstm
# Each line contains at most 129 chars. 
seq_len=129
# embedding dimension, which maps a character to a 256-dimension vector
num_embed=256
# number of lstm layers
num_lstm_layer=3
# hidden unit in LSTM cell
num_hidden=512
 
symbol= lstm.lstm_unroll(
    num_lstm_layer, 
    seq_len,
    len(vocab)+1,
    num_hidden=num_hidden,
    num_embed=num_embed,
    num_label=len(vocab)+1,
    dropout=0.2)

 

训练

首先我们创建一个数据迭代器:

import bucket_io
 
# The batch size for training
batch_size=32
 
# initalize states for LSTM
init_c= [('l%d_init_c'%l, (batch_size, num_hidden)) for l inrange(num_lstm_layer)]
init_h= [('l%d_init_h'%l, (batch_size, num_hidden)) for l inrange(num_lstm_layer)]
init_states= init_c + init_h
 
# Even though BucketSentenceIter supports various length examples,
# we simply use the fixed length version here
data_train= bucket_io.BucketSentenceIter(
    "./obama.txt",
    vocab, 
    [seq_len], 
    batch_size,             
    init_states, 
    seperate_char='\n',
    text2id=text2id,
    read_content=read_content)

输出:

Summary of dataset ==================
bucket of len 129 : 8290 samples

然后我们使用标准model.fit实现来训练:

import mxnet as mx
import numpy as np
import logging
logging.getLogger().setLevel(logging.DEBUG)
 
# We will show a quick demo with only 1 epoch. In practice, we can set it to be 100
num_epoch=1
# learning rate 
learning_rate=0.01
 
# Evaluation metric
def Perplexity(label, pred):
    loss =0.
    for i inrange(pred.shape[0]):
        loss +=-np.log(max(1e-10, pred[i][int(label[i])]))
    return np.exp(loss/ label.size)
 
model= mx.model.FeedForward(
    ctx=mx.gpu(0),
    symbol=symbol,
    num_epoch=num_epoch,
    learning_rate=learning_rate,
    momentum=0,
    wd=0.0001,
    initializer=mx.init.Xavier(factor_type="in", magnitude=2.34))
 
model.fit(X=data_train,
          eval_metric=mx.metric.np(Perplexity),
          batch_end_callback=mx.callback.Speedometer(batch_size,20),
          epoch_end_callback=mx.callback.do_checkpoint("obama"))

输出:

          batch_end_callback=mx.callback.Speedometer(batch_size,20),
          epoch_end_callback=mx.callback.do_checkpoint("obama"))
INFO:root:Start training with [gpu(0)]
INFO:root:Epoch[0] Batch [20]   Speed: 36.09 samples/sec    Train-Perplexity=38.167996
INFO:root:Epoch[0] Batch [40]   Speed: 34.29 samples/sec    Train-Perplexity=24.568035
INFO:root:Epoch[0] Batch [60]   Speed: 34.32 samples/sec    Train-Perplexity=23.439121
INFO:root:Epoch[0] Batch [80]   Speed: 34.26 samples/sec    Train-Perplexity=23.209663
INFO:root:Epoch[0] Batch [100]  Speed: 34.28 samples/sec    Train-Perplexity=22.835044
INFO:root:Epoch[0] Batch [120]  Speed: 34.29 samples/sec    Train-Perplexity=22.745794
INFO:root:Epoch[0] Batch [140]  Speed: 34.29 samples/sec    Train-Perplexity=22.500408
INFO:root:Epoch[0] Batch [160]  Speed: 34.23 samples/sec    Train-Perplexity=22.543436
INFO:root:Epoch[0] Batch [180]  Speed: 34.24 samples/sec    Train-Perplexity=22.566656
INFO:root:Epoch[0] Batch [200]  Speed: 34.30 samples/sec    Train-Perplexity=22.378215
INFO:root:Epoch[0] Batch [220]  Speed: 34.31 samples/sec    Train-Perplexity=22.458195
INFO:root:Epoch[0] Batch [240]  Speed: 34.30 samples/sec    Train-Perplexity=22.655659
INFO:root:Epoch[0] Resetting Data Iterator
INFO:root:Epoch[0] Time cost=241.197
INFO:root:Saved checkpoint to "obama-0001.params"

推理

我们首先定义一些效用函数来帮助我们进行推理:

from rnn_model import LSTMInferenceModel
 
 
# helper strcuture for prediction
def MakeRevertVocab(vocab):
    dic = {}
    for k, v in vocab.items():
        dic[v] = k
    return dic
 
# make input from char
def MakeInput(char, vocab, arr):
    idx = vocab[char]
    tmp = np.zeros((1,))
    tmp[0]= idx
    arr[:] = tmp
 
# helper function for random sample 
def _cdf(weights):
    total =sum(weights)
    result = []
    cumsum =0
    for w in weights:
        cumsum += w
        result.append(cumsum/ total)
    return result
 
def _choice(population, weights):
    assertlen(population)==len(weights)
    cdf_vals = _cdf(weights)
    x = random.random()
    idx = bisect.bisect(cdf_vals, x)
    return population[idx]
 
# we can use random output or fixed output by choosing largest probability
def MakeOutput(prob, vocab, sample=False, temperature=1.):
    if sample ==False:
        idx = np.argmax(prob, axis=1)[0]
    else:
        fix_dict = [""]+ [vocab[i] for i inrange(1,len(vocab)+1)]
        scale_prob = np.clip(prob,1e-6,1-1e-6)
        rescale = np.exp(np.log(scale_prob)/ temperature)
        rescale[:] /= rescale.sum()
        return _choice(fix_dict, rescale[0, :])
    try:
        char = vocab[idx]
    except:
        char =''
    return char

之后我们可以建立推理模型:

import rnn_model
 
# load from check-point
_, arg_params, __ = mx.model.load_checkpoint("obama",75)
 
# build an inference model
model= rnn_model.LSTMInferenceModel(
    num_lstm_layer,
    len(vocab)+1,
    num_hidden=num_hidden,
    num_embed=num_embed,
    num_label=len(vocab)+1,
    arg_params=arg_params,
    ctx=mx.gpu(),
    dropout=0.2)

现在我们可以产生一个以“The United States”开头的600字符的序列:

seq_length=600
input_ndarray= mx.nd.zeros((1,))
revert_vocab= MakeRevertVocab(vocab)
# Feel free to change the starter sentence
output='The United States'
random_sample=False
new_sentence=True
 
ignore_length=len(output)
 
for i inrange(seq_length):
    if i <= ignore_length -1:
        MakeInput(output[i], vocab, input_ndarray)
    else:
        MakeInput(output[-1], vocab, input_ndarray)
    prob = model.forward(input_ndarray, new_sentence)
    new_sentence =False
    next_char = MakeOutput(prob, revert_vocab, random_sample)
    if next_char =='':
        new_sentence =True
    if i >= ignore_length -1:
        output += next_char
print(output)

输出:

The United States of America. That's why I'm running for President.The first place we can do better than that they can afford to get the that they can afford to differ on the part of the political settlement. The second part of the problem is that the consequences would have to see the chance to starthe country that we can start by the challenges of the American people. The American people have been talking about how to compete with the streets of San Antonio who are serious about the courage to come together as one people. That the American people have been trying to get there. And they say

 

  • 2
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值