5-17 汉诺塔的非递归实现 (25分)

原创 2016年08月29日 08:53:09

5-17 汉诺塔的非递归实现 (25分)

借助堆栈以非递归(循环)方式求解汉诺塔的问题(n, a, b, c),即将N个盘子从起始柱(标记为“a”)通过借助柱(标记为“b”)移动到目标柱(标记为“c”),并保证每个移动符合汉诺塔问题的要求。
输入格式:

输入为一个正整数N,即起始柱上的盘数。
输出格式:

每个操作(移动)占一行,按柱1 -> 柱2的格式输出。
输入样例:

3

输出样例:

a -> c
a -> b
c -> b
a -> c
b -> a
b -> c
a -> c

思路
参考:http://blog.csdn.net/computerme/article/details/18080511
目前只看懂是用堆栈来替代递归中的数据存储问题。所谓的顺时针、逆时针还没搞懂。不过还是有非常多的资源可以参考学习,这道题先贴在这里,找时间继续钻研。

点击访问 PTA-测验

#include<stdio.h>
#define MAX 64
/* 评测结果
时间  结果  得分  题目  编译器     用时(ms)  内存(MB)  用户
2016-09-03 19:49    答案正确    25  5-17    gcc     169     8   569985011
测试点结果
测试点     结果  得分/满分   用时(ms)  内存(MB)
测试点1    答案正确    15/15   1   1
测试点2    答案正确    2/2     1   1
测试点3    答案正确    2/2     2   1
测试点4    答案正确    6/6     169     8
查看代码*/
typedef struct st {
    int s[MAX];
    int top;
    char name;
}*ST;

long Pow(int x,int y);//计算x^y
void Creat(struct st ta[],int n);//初始化
void Hannuota(struct st ta[],long max);//主函数
int Top(ST a) ;
int Pop(ST a) ;
void Push(ST a,int x);

int main() {
    int n;
    scanf("%d",&n);
    struct st ta[3];
    Creat(ta,n);
    long max=Pow(2,n)-1;
//  printf("%lld\n",max);
    Hannuota(ta,max);
    return 0;
}
int Top(ST a) {
    return a->s[a->top];
};
int Pop(ST a) {
    return a->s[a->top--];
};
void Push(ST a,int x) {
    a->s[++a->top]=x;
};

long Pow(int x,int y) {
    long a=(int)x;
    for(int i=1; i<y; i++)a*=x;
    return a;
}


void Creat(struct st ta[],int n) {
    ta[0].name='a';
    ta[0].top=n-1;
//把所有圆盘从大到小放到柱子A上
    for(int i=0; i<n; i++)ta[0].s[i]=n-i;
    ta[1].top=ta[2].top=0;
    for(int i=0; i<n; i++)ta[1].s[i]=ta[2].s[i]=0;
//若n为偶数,按顺时针方向摆放ABC,否则逆时针
    if(n%2==0) {
        ta[1].name='b';
        ta[2].name='c';
    } else {
        ta[1].name='c';
        ta[2].name='b';
    }
}

void Hannuota(struct st ta[],long max) {
    for(int k=0,i=0; k<max; k++) {
        //按顺时针方向吧圆盘1从现在的位置移动到下一根柱子
        Push(&ta[(i+1)%3],Pop(&ta[(i%3)]));
//      ta[(i+1)%3].Push(ta[i%3].Pop());
        printf("%c -> %c\n",ta[i%3].name,ta[(i+1)%3].name);
        i++;
        //把另外两根柱子上的可以移动的圆盘移动到新的柱子上
        if(k++<max) {
            //吧非空柱子上的圆盘移动到空柱子上,当两根柱子都为空时,移动较小的圆盘
            if(Top(&ta[(i+1)%3])==0||
                    Top(&ta[(i-1)%3])>0&&
                    Top(&ta[(i+1)%3]) >Top(&ta[(i-1)%3])) {
                Push(&ta[(i+1)%3],Pop(&ta[(i-1)%3]));
//              ta[(i+1)%3].Push(ta[(i-1)%3].Pop());
                printf("%c -> %c\n",ta[(i-1)%3].name,ta[(i+1)%3].name);
            } else {
                Push(&ta[(i-1)%3],Pop(&ta[(i+1)%3]));
//              ta[(i-1)%3].Push(ta[(i+1)%3].Pop());
                printf("%c -> %c\n",ta[(i+1)%3].name,ta[(i-1)%3].name);
            }
        }

    }

}
版权声明:写这些东西还是问了交流进步,如果你有不同的方法、见解,欢迎交流分享。文章中附的代码只传达当时我的一种做法,并非我认为最好的。

汉诺塔问题的递归和非递归算法

汉诺塔问题是源于印度一个古老传说的益智玩具。大梵天创造世界的时候做了三根金刚石柱子,在一根柱子上从下往上按照大小顺序摞着64片黄金圆盘。大梵天命令婆罗门把圆盘从下面开始按大小顺序重新摆放在另一根柱子上...

5-17 汉诺塔的非递归实现 (25分)

借助堆栈以非递归(循环)方式求解汉诺塔的问题(n, a, b, c),即将N个盘子从起始柱(标记为“a”)通过借助柱(标记为“b”)移动到目标柱(标记为“c”),并保证每个移动符合汉诺塔问题的要求。 ...

迭代式汉诺塔(利用栈实现非递归)

汉诺塔问题的描述:   汉诺塔(Tower of Hanoi)问题又称“世界末日问题”有这样一个故事。古代有一个焚塔,塔内有3个基座A,B,C,开始时A基座上有64个盘子,盘子大小不等,大的在下,小的...
  • vmezr
  • vmezr
  • 2014年02月13日 01:30
  • 2616

3-07. 求前缀表达式的值(25) (ZJU_PAT数学)

3-07. 求前缀表达式的值(25) (ZJU_PAT数学)

<数据结构学习与实验指导>3-1一元多项式求导/3-2汉诺塔的非递归实现

c++

汉诺塔 递归与非递归实现 (1)

汉诺塔问题:如果将n个盘子(由小到大)从a通过b,搬到c,搬运过程中不能出现小盘子在大盘子下面的情况。     分析:这个一个递归问题。只要将n-1个盘子从a通过c(没有中间点肯定不行)搬到b,...

递归和非递归实现汉诺塔问题

汉诺塔(又称河内塔)问题其实是印度的一个古老的传说。 开天辟地的神勃拉玛(和中国的盘古差不多的神吧)在一个庙里留下了三根金刚石的棒,第一根上面套着64个圆的金片,最大的一个在底下,其余一个比一 ...

面试题17:合并两个有序链表,递归和非递归实现

递归和非递归的方法合并两个有序链表。

2013-03-17---二叉树递归,非递归实现(附代码)深度,叶子节点数量,逐行打印二叉树

昨天晚上没有发文章,说来话长啊,昨天不知道是csdn的问题,还是我的问题,我访问了半天,访问不上网站啊,后来12点多了,就睡了。上一篇文章说到了二叉树的先序,中序,后序遍历问题,这次还是说的简单的一点...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:5-17 汉诺塔的非递归实现 (25分)
举报原因:
原因补充:

(最多只允许输入30个字)