关闭

5-32 哥尼斯堡的“七桥问题” (25分)

标签: C语言欧拉回路
824人阅读 评论(0) 收藏 举报
分类:

5-32 哥尼斯堡的“七桥问题” (25分)

哥尼斯堡是位于普累格河上的一座城市,它包含两个岛屿及连接它们的七座桥,如下图所示。
这里写图片描述
可否走过这样的七座桥,而且每桥只走过一次?瑞士数学家欧拉(Leonhard Euler,1707—1783)最终解决了这个问题,并由此创立了拓扑学。

这个问题如今可以描述为判断欧拉回路是否存在的问题。欧拉回路是指不令笔离开纸面,可画过图中每条边仅一次,且可以回到起点的一条回路。现给定一个无向图,问是否存在欧拉回路?
输入格式:

输入第一行给出两个正整数,分别是节点数NNN (1≤N≤1000)和边数M;随后的M行对应M条边,每行给出一对正整数,分别是该条边直接连通的两个节点的编号(节点从1到N编号)。
输出格式:

若欧拉回路存在则输出1,否则输出0。
输入样例1:

6 10
1 2
2 3
3 1
4 5
5 6
6 4
1 4
1 6
3 4
3 6

输出样例1:

1

输入样例2:

5 8
1 2
1 3
2 3
2 4
2 5
5 3
5 4
3 4

输出样例2:

0

思路
关键词:欧拉回路

点击访问 PTA-测验

#include <stdio.h>
#include<stdlib.h>
#define Min(x,y) (x>y)?(x+=y,y=x-y,x-=y):(x=x,y=y)
/* 评测结果
时间  结果  得分  题目  编译器     用时(ms)  内存(MB)  用户
2016-08-16 07:43    正在评测    0   5-32    gcc     无   无   569985011
测试点结果
测试点         结果  得分/满分   用时(ms)  内存(MB)
测试点1    答案正确    10/10   1   1
测试点2    答案正确    9/9     2   1
测试点3    答案正确    2/2     1   1
测试点4    答案正确    2/2     205     1
测试点5    答案正确    2/2     167     1
查看代码
*/
int fun(int,int);

int main() {
    /*{//测试大小数交换函数
    int x=3,y=2;
    Min(x,y);
    printf("%d-%d",x,y);
    }*/


    int Map[1001],Reached[1001],n;
    int m;
    scanf("%d%d",&n,&m);

    for(int i=0; i<=n; i++) {
        Reached[i]=0;
        Map[i]=0;

    }
    while(m--) {
        int a,b;
        scanf("%d%d",&a,&b);
        Reached[a]+=1;
        Reached[b]+=1;

        if(Map[a]&&Map[b]) { //两个点均不为空,追溯他们各自的头结点合并链条
            while(Map[a]!=a)a=Map[a];//对于这道题来说,并不必要找头结点合并,
            while(Map[b]!=b)b=Map[b];//只要确定每个结点不是头结点就够了
            Min(a,b);                //所以效率还可以有所提升
            Map[b]=a;
        } else {
            if(Map[a]||Map[b]) { //有且仅有一个是已收入地图的
                Map[a]+=Map[b];
                Map[b]=Map[a];
            } else { //两个都是第一次收入地图的
                Min(a,b);
                Map[a]=a;
                Map[b]=a;
            }
        }
    }
    int result=1;
    for(int i=1; i<=n; i++) {//保证每个节点都被到达过,且度为偶数方为1
        if(Reached[i]==0||Reached[i]%2)result=0;
    }
    for(int i=2; i<=n&&result; i++) { //如果除了第一个节点意外还存在头结点,则此图不连通
        if(Map[i]==i)result=0;
    }
    printf("%d",result);

    return 0;
}

0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    文章分类
    最新评论