关闭

CODE[VS] 1018 单词接龙

标签: dfs算法
453人阅读 评论(0) 收藏 举报
分类:
题目描述 Description

    单词接龙是一个与我们经常玩的成语接龙相类似的游戏,现在我们已知一组单词,且给定一个开头的字母,要求出以这个字母开头的最长的“龙”(每个单词都最多在“龙”中出现两次),在两个单词相连时,其重合部分合为一部分,例如beast和astonish,如果接成一条龙则变为beastonish,另外相邻的两部分不能存在包含关系,例如at和atide间不能相连。

输入描述 Input Description

   输入的第一行为一个单独的整数n(n<=20)表示单词数,以下n行每行有一个单词,输入的最后一行为一个单个字符,表示“龙”开头的字母。你可以假定以此字母开头的“龙”一定存在.

输出描述 Output Description

   只需输出以此字母开头的最长的“龙”的长度

样例输入 Sample Input

5

at

touch

cheat

choose

tact

a

 

样例输出 Sample Output

23    

数据范围及提示 Data Size & Hint

(连成的“龙”为atoucheatactactouchoose)                                        


这个题是一个DFS的题目。考虑的算法思路是这样的:
用几个数组存储下列数据:
1.对应每个字符串,他和另外一个字符串(也可以包括自己)之间相同的长度。
2.每个字符串使用的次数。
3.每个字符串的长度。
4.字符串数组。

我们只需要在满足1数组中长度不为0且2数组中次数不超过两次即可进入DFS,进行递归。
代码如下:
/*************************************************************************
    > File Name: 单词接龙.cpp
    > Author: zhanghaoran
    > Mail: chilumanxi@gmail.com 
    > Created Time: 2015年07月08日 星期三 19时22分00秒
 ************************************************************************/

#include <iostream>
#include <algorithm>
#include <utility>
#include <cstring>
using namespace std;

int N;
int a[21][21];
int flag[21];
int len[21];

char s[21][1000];
char t[5];

int dfs(int x){
	int length = len[x];
	int temp;
	for(int i = 1; i <= N; i ++){
		temp = 0;
		if(a[x][i] && flag[i] < 2){
			flag[i] ++;
			temp = dfs(i);
			flag[i] --;
			temp += len[x] - a[x][i];
		}
		if(temp > length)
			length = temp;
	}
	return length;
}

int main(void){
	int minlen, maxlen;
	int maxn = 0;
	cin >> N;
	for(int i = 1; i <= N; i ++){
		cin >> s[i];
		len[i] = strlen(s[i]);		
	}
	for(int i = 1; i <= N; i ++){
		for(int j = 1; j <= N; j ++){
			minlen = min(len[i], len[j]);		
			for(int k = 1; k <= minlen; k ++){
				if(strncmp(s[i] + len[i] - k, s[j], k) == 0){   //strncmp的作用是比较第一个参数和第二个参数长度为第三个参数长度的字符串。
					a[i][j] = k;
					break;
				}
			}
		}
	}
	cin >> t;
	for(int i = 1; i <= N; i ++){
		flag[i] = 0;
	}
	for(int i = 1; i <= N; i ++){
		if(s[i][0] == t[0]){    //队每个可以当做龙头的字符串都进行讨论
			flag[i] ++;
			maxn = max(maxn, dfs(i));
			flag[i] --;
		}
	}
	cout << maxn << endl;
	return 0;
}


(另:其实刷这道题只是看看是不是CSDN是不是不用审核了=_=)
0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:47341次
    • 积分:1812
    • 等级:
    • 排名:千里之外
    • 原创:136篇
    • 转载:1篇
    • 译文:0篇
    • 评论:3条
    文章分类
    最新评论