后缀数组的应用

原创 2016年05月31日 14:31:01

求两个子串的最长公共前缀

HDU4691:http://acm.hdu.edu.cn/showproblem.php?pid=4691

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;

const int MAXN = 1e5 + 100;
typedef long long LL;
char s[MAXN]; int ss[MAXN]; int l[MAXN],r[MAXN];

struct Suf{
        int wa[MAXN],wb[MAXN],wv[MAXN],ws[MAXN];
        int sa[MAXN],rank[MAXN],het[MAXN];
        int cmp(int *r,int a,int b,int l) 
        { 
                 return r[a] == r[b] && r[a+l] == r[b+l];
        }
        void da(int *r,int n,int m)
        {
                int i,j,k,p,*x = wa,*y = wb,*t;
                for(i=0;i<m;i++) ws[i] = 0;
                for(i=0;i<n;i++) ws[x[i]=r[i]]++;
                for(i=1;i<m;i++) ws[i]+=ws[i-1];
                for(i=n-1;i>=0;i--) sa[--ws[x[i]]]=i;
                for(j=1,p=1;p<n;j*=2,m=p)
                {
                        for(p=0,i=n-j;i<n;i++) y[p++] = i;
                        for(i=0;i<n;i++) if(sa[i]>=j) y[p++] = sa[i]-j;
                        for(i=0;i<n;i++) wv[i] = x[y[i]];
                        for(i=0;i<m;i++) ws[i] = 0;
                        for(i=0;i<n;i++) ws[wv[i]]++;
                        for(i=1;i<m;i++) ws[i]+=ws[i-1];
                        for(i=n-1;i>=0;i--) sa[--ws[wv[i]]] = y[i];
                        for(t=x,x=y,y=t,p=1,x[sa[0]]=0,i=1;i<n;i++)
                        x[sa[i]]=cmp(y,sa[i-1],sa[i],j)?p-1:p++;
                }
                k = 0 ;  
                for (i=1;i<n;i++) rank[sa[i]] = i;  
                for (i=0;i<n-1;het[rank[i++]] = k)  
                        for (k?k--:0,j=sa[rank[i]-1];r[i+k] == r[j+k];k++);
                return;
        }
        int tmp[25],f[MAXN][25],log2[MAXN];
        void rmq(int n)
        {
                int i,j; tmp[0] = 1;
                for(i=1;i<20;i++)  tmp[i] = tmp[i-1]*2;
                log2[0] = -1;
                for(i=1;i<=n;i++) log2[i] = (i&(i-1)) ? log2[i-1]:log2[i-1]+1;
                for(i=1;i<=n;i++) f[i][0] = het[i];
                for(j=1;j<20;j++) for(i=1;i+tmp[j]-1<=n;i++)
                        f[i][j] = min(f[i][j-1],f[i+tmp[j-1]][j-1]);
        }
        int lcp(int a,int b)
        {
                int x = rank[a], y = rank[b];
                if( x>y ) swap(x,y);
                x++;
                int k = log2[y-x+1];
                return min(f[x][k],f[y-tmp[k]+1][k]);
        }
}arr;

int get(int x)
{
        int i = 0;
        if(x==0) return 1;
        while(x)
        {
                i++;
                x/=10;
        }
        return i;
}
int main()
{
        while( scanf(" %s",s)!=EOF)         
        {
                int len = strlen(s);
                ss[len] = 0;
                for(int i=0;i<len;i++) ss[i] = s[i]-'a'+1;
                arr.da(ss,len+1,27);
                arr.rmq(len+1);

                LL ans1 = 0, ans2 = 0;
                int m; 
                scanf("%d",&m);
                for(int i=1;i<=m;i++)
                {
                        scanf("%d%d",&l[i],&r[i]); r[i]--;

                        ans1 += (LL)r[i] - l[i] + 2;

                        if(i==1)
                                ans2 = (LL)r[i] - l[i] + 1 + 3;
                        else
                        {
                        //from here:
                                int add;
                                if(l[i]==l[i-1]) add = min((LL)r[i]-l[i]+1,(LL)r[i-1]-l[i-1]+1);
                                else add = arr.lcp(l[i-1],l[i]);
                                add = min(add,min(r[i]-l[i]+1,r[i-1]-l[i-1]+1));
                        //end here注意求子串和求后缀的区别。。

                                ans2 += get(add) + 1 + (LL)r[i]-l[i]+1-add + 1;
                        }
                }
                printf("%I64d %I64d\n",ans1,ans2);
        }
        return 0;
}

不可重叠的长度至少为k的最长重复子串

不可重叠的最长重复子串 和 不可重叠的长度至少为k的最长重复子串做法类似,都是二分区间,但是二者二分区间的长度不同,其他的别无她意。
http://poj.org/problem?id=1743

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <climits>
using namespace std;

const int MAXN = 20050;
int ss[MAXN];

struct Suf{

        int wa[MAXN],wb[MAXN],wv[MAXN],ws[MAXN];
        int sa[MAXN],rank[MAXN],het[MAXN];
        int cmp(int *r,int a,int b,int l) 
        { 
                 return r[a] == r[b] && r[a+l] == r[b+l];
        }
        void da(int *r,int n,int m)
        {
                int i,j,k,p,*x = wa,*y = wb,*t;
                for(i=0;i<m;i++) ws[i] = 0;
                for(i=0;i<n;i++) ws[x[i]=r[i]]++;
                for(i=1;i<m;i++) ws[i]+=ws[i-1];
                for(i=n-1;i>=0;i--) sa[--ws[x[i]]]=i;
                for(j=1,p=1;p<n;j*=2,m=p)
                {
                        for(p=0,i=n-j;i<n;i++) y[p++] = i;
                        for(i=0;i<n;i++) if(sa[i]>=j) y[p++] = sa[i]-j;
                        for(i=0;i<n;i++) wv[i] = x[y[i]];
                        for(i=0;i<m;i++) ws[i] = 0;
                        for(i=0;i<n;i++) ws[wv[i]]++;
                        for(i=1;i<m;i++) ws[i]+=ws[i-1];
                        for(i=n-1;i>=0;i--) sa[--ws[wv[i]]] = y[i];
                        for(t=x,x=y,y=t,p=1,x[sa[0]]=0,i=1;i<n;i++)
                        x[sa[i]]=cmp(y,sa[i-1],sa[i],j)?p-1:p++;
                }
                k = 0 ;  
                for (i=1;i<n;i++) rank[sa[i]] = i;  
                for (i=0;i<n-1;het[rank[i++]] = k)  
                        for (k?k--:0,j=sa[rank[i]-1];r[i+k] == r[j+k];k++);
                return;
        }
        bool check(int x,int n)
        {
                int i = 1;
                while(true)
                {
                        while( i<n-1 && het[i] < x ) i++;
                        if(i>=n-1) break;

                        int L = sa[i-1];
                        int R = sa[i-1];
                        while( i<n-1 && het[i] >= x)
                        {
                                L =  min(L,sa[i]);
                                R =  max(R,sa[i]);
                                i++;
                        }
                        if( R - L >=x ) return true;
                }
                return false;
        }
}arr;

int main()
{
        int n;
        while( scanf("%d",&n)!=EOF && n)
        {
                int prex; scanf("%d",&prex);
                for(int i=0;i<n-1;i++)
                {
                        int x;
                        scanf("%d",&x);
                        ss[i] = x-prex + 88;
                        prex = x;
                }
                ss[n-1] = 0;
                arr.da(ss,n,176);

                int L = 4, R = n/2; bool flag = false;
                while( L <= R )
                {
                        int mid = (L+R) >>1;
                        if( arr.check(mid,n) ) L = mid+1,flag = true;
                        else R = mid-1;
                }
                int ans = flag ? L : 0;
                printf("%d\n",ans);
        }
        return 0;
}
版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

梳理——后缀数组应用

// 难度从 * ~ ***** 递增,*为简单 2016.03.4.24 1. POJ 2774 题意:给两个长度不超过 100000 的字符串,求他们的最长公共子串。 难度:* 算法&&技巧:字符...
  • ALXPCUN
  • ALXPCUN
  • 2016年04月25日 08:45
  • 349

后缀数组应用小结

前言 之前学了后缀数组,这真是一个神奇的东西。早就想总结一些SA的应用,但一直没时间,现在终于抽出空来写一下自己的心得。 本文只讨论后缀数组的一些应用,不一定全面,仅供参考 还不会后缀数组的同学请...

五分钟搞懂后缀数组!后缀数组解析以及应用(附详解代码)

这是一篇本人自己对后缀数组的一些理解,有详细的说明以及附有详解的代码。...

后缀数组应用

求两个houzhuish
  • kamsau
  • kamsau
  • 2014年09月15日 23:46
  • 882

后缀数组的构造和应用基础

  • 2010年09月13日 13:55
  • 393KB
  • 下载

后缀数组与应用

  • 2013年09月05日 20:25
  • 273KB
  • 下载

后缀数组及其应用

后缀数组概念 基本概念介绍: 子串:字符串 S 的子串 r[i..j] , i ≤ j ,表示 r 串中从 i 到 j 这一段,就是顺次排列 r[i],r[i+1],...,r[j] 形成的字符串。...

查找一段文字中最长的重复字串 - 编程珠玑(排过序的后缀数组的应用)

《编程珠玑》在第15章“珍珠字符串”一节,给出了一个非常漂亮的实现 - 基于目标字符串的后缀数组的实现。 后缀数组类似于后缀树,但是又有所不同。 后缀树常用来查找某一段文字中是否出现过(多个)...
  • fuxiang
  • fuxiang
  • 2012年01月31日 14:33
  • 128

HDU5769后缀数组的简单应用

题目链接http://acm.hdu.edu.cn/showproblem.php?pid=576题目意思也就是给你一个字符x,问字符串str中有多少个包含x的子串(x在子串中至少出现一次)比赛是第一...

POJ2217——Secretary(后缀数组应用)

Secretary Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 1089   Acce...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:后缀数组的应用
举报原因:
原因补充:

(最多只允许输入30个字)