后缀数组的应用

原创 2016年05月31日 14:31:01

求两个子串的最长公共前缀

HDU4691:http://acm.hdu.edu.cn/showproblem.php?pid=4691

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;

const int MAXN = 1e5 + 100;
typedef long long LL;
char s[MAXN]; int ss[MAXN]; int l[MAXN],r[MAXN];

struct Suf{
        int wa[MAXN],wb[MAXN],wv[MAXN],ws[MAXN];
        int sa[MAXN],rank[MAXN],het[MAXN];
        int cmp(int *r,int a,int b,int l) 
        { 
                 return r[a] == r[b] && r[a+l] == r[b+l];
        }
        void da(int *r,int n,int m)
        {
                int i,j,k,p,*x = wa,*y = wb,*t;
                for(i=0;i<m;i++) ws[i] = 0;
                for(i=0;i<n;i++) ws[x[i]=r[i]]++;
                for(i=1;i<m;i++) ws[i]+=ws[i-1];
                for(i=n-1;i>=0;i--) sa[--ws[x[i]]]=i;
                for(j=1,p=1;p<n;j*=2,m=p)
                {
                        for(p=0,i=n-j;i<n;i++) y[p++] = i;
                        for(i=0;i<n;i++) if(sa[i]>=j) y[p++] = sa[i]-j;
                        for(i=0;i<n;i++) wv[i] = x[y[i]];
                        for(i=0;i<m;i++) ws[i] = 0;
                        for(i=0;i<n;i++) ws[wv[i]]++;
                        for(i=1;i<m;i++) ws[i]+=ws[i-1];
                        for(i=n-1;i>=0;i--) sa[--ws[wv[i]]] = y[i];
                        for(t=x,x=y,y=t,p=1,x[sa[0]]=0,i=1;i<n;i++)
                        x[sa[i]]=cmp(y,sa[i-1],sa[i],j)?p-1:p++;
                }
                k = 0 ;  
                for (i=1;i<n;i++) rank[sa[i]] = i;  
                for (i=0;i<n-1;het[rank[i++]] = k)  
                        for (k?k--:0,j=sa[rank[i]-1];r[i+k] == r[j+k];k++);
                return;
        }
        int tmp[25],f[MAXN][25],log2[MAXN];
        void rmq(int n)
        {
                int i,j; tmp[0] = 1;
                for(i=1;i<20;i++)  tmp[i] = tmp[i-1]*2;
                log2[0] = -1;
                for(i=1;i<=n;i++) log2[i] = (i&(i-1)) ? log2[i-1]:log2[i-1]+1;
                for(i=1;i<=n;i++) f[i][0] = het[i];
                for(j=1;j<20;j++) for(i=1;i+tmp[j]-1<=n;i++)
                        f[i][j] = min(f[i][j-1],f[i+tmp[j-1]][j-1]);
        }
        int lcp(int a,int b)
        {
                int x = rank[a], y = rank[b];
                if( x>y ) swap(x,y);
                x++;
                int k = log2[y-x+1];
                return min(f[x][k],f[y-tmp[k]+1][k]);
        }
}arr;

int get(int x)
{
        int i = 0;
        if(x==0) return 1;
        while(x)
        {
                i++;
                x/=10;
        }
        return i;
}
int main()
{
        while( scanf(" %s",s)!=EOF)         
        {
                int len = strlen(s);
                ss[len] = 0;
                for(int i=0;i<len;i++) ss[i] = s[i]-'a'+1;
                arr.da(ss,len+1,27);
                arr.rmq(len+1);

                LL ans1 = 0, ans2 = 0;
                int m; 
                scanf("%d",&m);
                for(int i=1;i<=m;i++)
                {
                        scanf("%d%d",&l[i],&r[i]); r[i]--;

                        ans1 += (LL)r[i] - l[i] + 2;

                        if(i==1)
                                ans2 = (LL)r[i] - l[i] + 1 + 3;
                        else
                        {
                        //from here:
                                int add;
                                if(l[i]==l[i-1]) add = min((LL)r[i]-l[i]+1,(LL)r[i-1]-l[i-1]+1);
                                else add = arr.lcp(l[i-1],l[i]);
                                add = min(add,min(r[i]-l[i]+1,r[i-1]-l[i-1]+1));
                        //end here注意求子串和求后缀的区别。。

                                ans2 += get(add) + 1 + (LL)r[i]-l[i]+1-add + 1;
                        }
                }
                printf("%I64d %I64d\n",ans1,ans2);
        }
        return 0;
}

不可重叠的长度至少为k的最长重复子串

不可重叠的最长重复子串 和 不可重叠的长度至少为k的最长重复子串做法类似,都是二分区间,但是二者二分区间的长度不同,其他的别无她意。
http://poj.org/problem?id=1743

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <climits>
using namespace std;

const int MAXN = 20050;
int ss[MAXN];

struct Suf{

        int wa[MAXN],wb[MAXN],wv[MAXN],ws[MAXN];
        int sa[MAXN],rank[MAXN],het[MAXN];
        int cmp(int *r,int a,int b,int l) 
        { 
                 return r[a] == r[b] && r[a+l] == r[b+l];
        }
        void da(int *r,int n,int m)
        {
                int i,j,k,p,*x = wa,*y = wb,*t;
                for(i=0;i<m;i++) ws[i] = 0;
                for(i=0;i<n;i++) ws[x[i]=r[i]]++;
                for(i=1;i<m;i++) ws[i]+=ws[i-1];
                for(i=n-1;i>=0;i--) sa[--ws[x[i]]]=i;
                for(j=1,p=1;p<n;j*=2,m=p)
                {
                        for(p=0,i=n-j;i<n;i++) y[p++] = i;
                        for(i=0;i<n;i++) if(sa[i]>=j) y[p++] = sa[i]-j;
                        for(i=0;i<n;i++) wv[i] = x[y[i]];
                        for(i=0;i<m;i++) ws[i] = 0;
                        for(i=0;i<n;i++) ws[wv[i]]++;
                        for(i=1;i<m;i++) ws[i]+=ws[i-1];
                        for(i=n-1;i>=0;i--) sa[--ws[wv[i]]] = y[i];
                        for(t=x,x=y,y=t,p=1,x[sa[0]]=0,i=1;i<n;i++)
                        x[sa[i]]=cmp(y,sa[i-1],sa[i],j)?p-1:p++;
                }
                k = 0 ;  
                for (i=1;i<n;i++) rank[sa[i]] = i;  
                for (i=0;i<n-1;het[rank[i++]] = k)  
                        for (k?k--:0,j=sa[rank[i]-1];r[i+k] == r[j+k];k++);
                return;
        }
        bool check(int x,int n)
        {
                int i = 1;
                while(true)
                {
                        while( i<n-1 && het[i] < x ) i++;
                        if(i>=n-1) break;

                        int L = sa[i-1];
                        int R = sa[i-1];
                        while( i<n-1 && het[i] >= x)
                        {
                                L =  min(L,sa[i]);
                                R =  max(R,sa[i]);
                                i++;
                        }
                        if( R - L >=x ) return true;
                }
                return false;
        }
}arr;

int main()
{
        int n;
        while( scanf("%d",&n)!=EOF && n)
        {
                int prex; scanf("%d",&prex);
                for(int i=0;i<n-1;i++)
                {
                        int x;
                        scanf("%d",&x);
                        ss[i] = x-prex + 88;
                        prex = x;
                }
                ss[n-1] = 0;
                arr.da(ss,n,176);

                int L = 4, R = n/2; bool flag = false;
                while( L <= R )
                {
                        int mid = (L+R) >>1;
                        if( arr.check(mid,n) ) L = mid+1,flag = true;
                        else R = mid-1;
                }
                int ans = flag ? L : 0;
                printf("%d\n",ans);
        }
        return 0;
}
版权声明:本文为博主原创文章,未经博主允许不得转载。

【后缀数组系列】二、后缀数组的两种求法

待续。。。
  • friendbkf
  • friendbkf
  • 2015年12月06日 17:54
  • 374

后缀数组应用小结

前言 之前学了后缀数组,这真是一个神奇的东西。早就想总结一些SA的应用,但一直没时间,现在终于抽出空来写一下自己的心得。 本文只讨论后缀数组的一些应用,不一定全面,仅供参考 还不会后缀数组的同学请...
  • Akak__ii
  • Akak__ii
  • 2016年04月28日 23:25
  • 1127

五分钟搞懂后缀数组!后缀数组解析以及应用(附详解代码)

这是一篇本人自己对后缀数组的一些理解,有详细的说明以及附有详解的代码。...
  • YxuanwKeith
  • YxuanwKeith
  • 2016年02月05日 13:13
  • 16508

后缀数组之高度数组

加了一点自己对高度数组的理解: height 数组:定义 height[i]=suffix(sa[i-1])和 suffix(sa[i])的最长公共前缀,也就是排名相邻的两个后缀的最长公共前缀。那...
  • Mtrix
  • Mtrix
  • 2016年08月01日 13:58
  • 944

梳理——后缀数组应用

// 难度从 * ~ ***** 递增,*为简单 2016.03.4.24 1. POJ 2774 题意:给两个长度不超过 100000 的字符串,求他们的最长公共子串。 难度:* 算法&&技巧:字符...
  • ALXPCUN
  • ALXPCUN
  • 2016年04月25日 08:45
  • 395

后缀数组题目小结

因为有两次遇到了后缀数组的题目,于是这才下定决心学习了一下后缀数组,虽然对后缀数组并没有说理解得很透彻,但是一些基本得模板还是会用了,起码对付一些一般的后缀数组应该还是没有问题的了 对于后缀数组的原...
  • libin56842
  • libin56842
  • 2015年06月10日 13:48
  • 3527

后缀树和后缀数组

后缀树和后缀数组
  • jinnlxl
  • jinnlxl
  • 2015年01月25日 00:47
  • 512

后缀数组:原理和实现

后缀数组(Suffix Array)是某一字符串的所有后缀按照字典序的一个排列。本文数组的索引从0开始。称s[j..len(s)-1]为后缀j。sa[i] = j,表示原串的所有后缀按字典序排列,排在...
  • ruoruo_cheng
  • ruoruo_cheng
  • 2016年08月21日 21:47
  • 1691

后缀数组(基本概念及其构造方法之倍增算法)

本文先描述了学习后缀数组前先要明确的几个基本概念,然后对后缀数组的构造方法中的倍增算法的思路和代码实现进行了分析。其中包括了别人的解释和自己的理解。有不对之处,欢迎指正。...
  • sojisub__0173
  • sojisub__0173
  • 2015年12月13日 20:55
  • 513

后缀数组练习题若干

POJ 1743    不可重叠最长重复子串 二分答案。 即子串的长度,假设为k时。 利用height数组,将排序后的后缀分为若干组。 每组内的height值都不小于k。 然后只需查看组内是否有满足要...
  • sdj222555
  • sdj222555
  • 2013年10月13日 21:00
  • 2425
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:后缀数组的应用
举报原因:
原因补充:

(最多只允许输入30个字)