关闭

51nod 1584 加权约数和

原题链接.题解:必知知识:σ(n)是n的约数和。 若n=∏pqiin=\prod p_i^{q_i} 则σ(n)=∏∑qij=0pjiσ(n)=\prod \sum_{j=0}^{q_i} p_i^j =∏pqi+1i−1pi−1=\prod { p_i^{q_i + 1} - 1\over p_i - 1} 知道了这个就可以线性筛法了,如有不懂得见code。必要结论:σ(i∗j)=∑p|i...
阅读(49) 评论(0)

51nod 1220 约数之和

原题链接.题解:必要结论: σ(i∗j)=∑p|i∑q|jp∗jq(gcd(p,q)=1)σ(i*j)=\sum_{p|i} \sum_{q|j} p *{ j \over q} (gcd(p, q) =1) 证明: ∑p|i∑q|jp∗jq(gcd(p,q)=1)\sum_{p|i} \sum_{q|j} p *{ j \over q} (gcd(p, q) =1) =∑p|i∑q|jp∗...
阅读(58) 评论(0)

51nod 1223 分数等式的数量

原题链接.题解:Ans=∑ni=1∑i−1j=1i+j | i∗jAns = \sum_{i = 1}^n \sum_{j = 1}^{i-1} i + j ~| ~i * j =∑nd=1∑n/di=1∑i−1j=1d(i+j) | i∗j∗d2(gcd(i,j)=1)=\sum_{d = 1}^n \sum_{i=1}^{n/d} \sum_{j=1}^{i-1}d(i+j)~ | ~i*j*...
阅读(36) 评论(0)

【NOIP2017提高A组模拟10.7】Confess

Description:小w 隐藏的心绪已经难以再隐藏下去了。 小w 有n + 1(保证n 为偶数) 个心绪,每个都包含了[1,2n] 的一个大小为n 的子集。 现在他要找到隐藏的任意两个心绪,使得他们的交大于等于n/2 。题解:设第i位的1的总数是cic_i 那么显然有∑2ni=1ci=n(n+1)/2\sum_{i=1}^{2n} c_i = n(n+1)/2两集合交的期望是: ∑2ni...
阅读(59) 评论(0)

【NOIP2017提高A组模拟10.7】Repulsed

Description:小w 心里的火焰就要被熄灭了。 简便起见,假设小w 的内心是一棵n -1 条边,n 个节点的树。 现在你要在每个节点里放一些个灭火器,每个节点可以放任意多个。 接下来每个节点都要被分配给一个至多k 条边远的灭火器,每个灭火器最多能分配给s 个节点。 至少要多少个灭火器才能让小w 彻底死亡呢? n <= 10^5, k <= 20, s <= 10^9题解:贪心题都是...
阅读(111) 评论(0)

51nod 1323 完美平方

题目链接.异或方程组高斯消元例题。每个元素选与不选设为未知数。同一行同一列搞个方程。至于是完全平方数就分解质因数,对每个质因子建一个方程。答案是2的自由元个数次幂。自由元个数=元的个数-有用方程的条数。其实我到现在才知道高斯消元非三角矩阵的打法,感觉以前学了假的消元。可以用bitset优化,很简单,这里不讲。算法竞赛入门经典这本书里有一道类似的题,打法也是从那里copy的。Code:#include...
阅读(41) 评论(0)

51nod 算法马拉松29 C题 美丽的集合

原题链接。这其实是我第一次在算马上交题,但是我太弱了,除了这题,都不会。每次合并两个集合其实就是把一个集合的元素弄到一个集合里去做01背包。竟然有集合合并,那显然要启发式合并了,这样最多提出n log n个元素。但是如果暴力01背包每次的复杂度是10^5,难以接受。注意到这个01背包非常特殊,它只要求是否能够凑成这个体积,所以这是一个布尔值。 于是bitset就可以用了,每次暴力左移,再或上去就行...
阅读(79) 评论(0)

自然数幂和(差分表法)

问题:求∑ni=1ik\sum_{i = 1}^n i^k (1<=k<=2000) 模数为大于n的质数。题解:这个东西可以证明k次的自然数幂和一定是个k+1次的多项式,对拉格朗日插值法有点帮助。二次项展开: (n+1)k−nk(n+1)^k-n^k =∑k−1i=0Cik∗ni=\sum_{i=0}^{k-1}C_k^i*n^i∑ni=1((i+1)k−ik)=(n+1)k−1\sum_{...
阅读(48) 评论(0)

自然数幂和(拉格朗日插值法)

今天A组的第一题是这个 Σ(☉▽☉”a 题目: ∑ni=1ik\sum_{i=1}^n i^k 对一个大于i的质数取模。 1 解法: 不懂拉格朗日插值法的戳这儿。...
阅读(47) 评论(0)

拉格朗日插值法学习小记

此篇博客只是总结,具体详尽的定义证明请自己找论文,PPT。插值函数:假设现在有一个很恶心的函数f(x),它是不规则的。 现在我们要构造出一个函数g(x),它是f(x)的近似函数。想要构造出g,一种方法是从f上找几个点,然后构造g,使得g经过这些点。插值函数有很多种,我所说的是多项式插值。就是用代数多项式做插值函数的插值。 如果确定了k+1个点,那么g(x)是一个k次多项式。根据证明,满足一组合法...
阅读(67) 评论(0)

【NOIP2017提高A组模拟10.5】Ping

题目大意:给出一棵n个节点的树,和一些树上的路径,求最少选出多少个点能使得每条路径里都至少有一个选出的点。 1<=n<=10^5题解:这题的经典版就是树是一条单链。初一的贪心做法是按照右端点排序,然后每次选右端点最前的区间的右端点,把覆盖它的区间delete掉,继续做,证明显然。 除去排序的复杂度,可以O(n)扫一遍做到。树上的话就比较6了。 随便选一个点为根,搞出dfs序,把各条路径的lca...
阅读(50) 评论(0)

【GDOI2018模拟9.23】博弈

Description: 1<=nt的路径上的点,求出w,表示往它的子树中走一圈回来的最小代价,dp显然。 现在你可以想像从b->t走,你可以删掉相邻的子树,但是你不知道...
阅读(50) 评论(0)

【GDOI2018模拟9.23】动态图

Description: 1<=n<=10^6,1<=qr条边一次加进并查集,对于每一条边,它有贡献,就是加入它的时候,它会合并两个不同的集合。 反过来,它没有贡献,就是它所连着的两端本来就在一个集合里。假设我们按1->r的顺序加入每一条边,当加入一条边时,设它是x,y,设z为x到y的路径上编号最小的...
阅读(63) 评论(0)

51nod 1419 最小公倍数挑战

原题链接题目大意:从1到n中选三个数字(可以相同)。使得他们的最小公倍数最大。 要求O(1)。题解:n<=3时打表。首先要想起胎教时学的相邻两个正整数互质这个东西,证明用欧几里得显然。假设我们选n、(n-1)、(n-2)。 n和(n-1)是互质的,(n-1)和(n-2)也是互质的。 gcd(n,n-2) = gcd(n, 2).所以当n是奇数,显然选n、(n-1)、(n-2)最优。所以当n是偶...
阅读(57) 评论(0)

【NOIP2017提高A组模拟9.17】信仰是为了虚无之人

Description: 1<=n<=200000,1<=m<=400000题解:区间先转成前缀和数组上乱搞。看到xor我们可能会想到拆位,但是这道题拆位再路径压缩只能拿到20-50分。由于xor操作的特殊性,我们可以把限制看作两个点之间的一条边,边权是k,这样会形成一个森林,两个在同一树上的点的限制就是它们路径上的边权的xor和。这么样的话新加一个限制(x,y,k),就判断x,y是否在一棵树上,...
阅读(65) 评论(0)
149条 共10页1 2 3 4 5 ... 下一页 尾页
    个人资料
    • 访问:42086次
    • 积分:1825
    • 等级:
    • 排名:千里之外
    • 原创:126篇
    • 转载:5篇
    • 译文:0篇
    • 评论:16条
    最新评论