雷德算法

原创 2013年12月04日 15:54:30

使用雷德算法实现倒位序:

        对于自然顺序(二进制)我们是在低位加 1 得到下一位数,对于倒位序我们是在高位加 1 向低位进位。比如已知一个倒位序数是J求其下一个倒位序数,N位总数 ,把J与N/2比较若J<N/2则J的最高位为 0 ,把最高位置 1 ,就得到了J的下一个倒位序数;若J>=N/2则说明J的最高位为1 ,把最高位置0 ,比较次高位,若次高位为0 ,则把次高位置1,得到J的下一个倒位序,若次高位为1  , 则把次高位置0,以此类推...

以N = 8 为例:

倒位数顺序                  倒位数                  十进制

    000                           000                          0

    001                           100                          4

    010                            010                         2

    011                            110                         6

    100                            001                         1

    101                            101                         5

    110                            011                         3

    111                            111                         7


使用算法实现:(当顺序位序小于到序位序要变序)

#include <iostream>
using namespace  std;

int x[16] = {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15};
int y[16] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
int N = 8;

int main()
{
	int i,j,k;
	int temp;

	for(j=0,i=0;i<N-1;i++)    //这里实现了奇偶前后分开排序
	{
		if(i<j)                        //如果i<j,即进行变址
		{
			temp = x[j];
			x[j]  = x[i];
			x[i]  = temp;
		}
		k = N/2;                 //求j的下一个倒位序
		while(j >= k)        //如果k<=j,表示j的最高位为1 
		{
			j = j-k;                 //把最高位变成0
			k = k/2;               //k/2,比较次高位,依次类推,逐个比较,直到某个位为0
		}
		j = j+k;                //把0改为
	}//for()

	for(i = 0 ; i < N ; ++ i)
	{
		printf("%2d      %2d\n" , i , x[i]) ;
	}

	system("pause") ;
	return 0 ;
}




    

FFT倒序算法—雷德算法

3)倒序算法——雷德算法   自然序排列的二进制数,其下面一个数总比上面的数大1,而倒序二进制数的下面一个数是上面一个数在最高位加1并由高位向低位仅为而得到的。   若已知某数的倒序数是J,求下一个倒...
  • zwhlxl
  • zwhlxl
  • 2014年06月24日 10:29
  • 3511

雷德(Rader)算法

自然序排列的二进制数,其下面一个数总比上面的数大1,而倒序二进制数的下面一个数是上面一个数在最高位加1并由高位向低位仅为而得到的。   算法描述:在N个数中,若已知某数的倒序数是J,求下一个倒序数...
  • axiqia
  • axiqia
  • 2016年03月08日 21:15
  • 2299

雷德算法 (快速傅里叶变换中用到的倒位序算法)

下面假如使用A[I]存的是顺序位序,而B[J]存的是倒位序。IJ的时候就不用,不然就白忙活了。 例如   N = 8 的时候, 倒位序 顺序          二进制表示      倒位序 ...

雷德(Rader)算法

解释与图转自:http://m.blog.csdn.net/article/details?id=50273039 在实现FFT(快速Fourier变换)计算的时候,第一步要做的就是实现码位(二进制...

奥雷德SVGA050显示器说明书

  • 2017年07月31日 10:24
  • 2.6MB
  • 下载

最短路径--弗洛伊德(Floyd)算法

最短路径--弗洛伊德(Floyd)算法       最短路径问题。即寻找图中某两个特定结点间最短的路径长度。所谓图上的路径,即从图中一个起始结点到一个终止结点途中经过的所有结点序列,路径的长度...

舍伍德算法

  • 2017年11月10日 09:56
  • 977KB
  • 下载

百度、google、高德 地图比例尺功能实现(算法&&地图分辨率和zoomlevel之间的关系)

一、什么是比例尺? 比例尺是表示图上距离比实地距离缩小的程度,因此也叫缩尺。用公式表示为:比例尺=图上距离/实地距离。 例如地图上1厘米代表实地距离500千米,可写成:1∶50,000,000或写成:...
  • mad1989
  • mad1989
  • 2013年07月18日 01:12
  • 43091
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:雷德算法
举报原因:
原因补充:

(最多只允许输入30个字)