关闭

【PA2014】【BZOJ3714】Kuglarz

标签: 差分约束最小生成树
1267人阅读 评论(0) 收藏 举报
分类:

Description

魔术师的桌子上有n个杯子排成一行,编号为1,2,…,n,其中某些杯子底下藏有一个小球,如果你准确地猜出是哪些杯子,你就可以获得奖品。花费c_ij元,魔术师就会告诉你杯子i,i+1,…,j底下藏有球的总数的奇偶性。
采取最优的询问策略,你至少需要花费多少元,才能保证猜出哪些杯子底下藏着球?

Input

第一行一个整数n(1<=n<=2000)。
第i+1行(1<=i<=n)有n+1-i个整数,表示每一种询问所需的花费。其中c_ij(对区间[i,j]进行询问的费用,1<=i<=j<=n,1<=c_ij<=10^9)为第i+1行第j+1-i个数。

Output

输出一个整数,表示最少花费。

Sample Input

5

1 2 3 4 5

4 3 2 1

3 4 5

2 1

5

Sample Output

7
HINT

Source

鸣谢Jcvb

可以考虑差分约束吧
两个点之间连边就是他们的费用,这样之后做MST,很显然是合理的.
为什么我跑的这么慢卧槽..

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#define MAXN 2010
#define LL long long
using namespace std;
int n,top,sum;
LL ans;
int prev[MAXN],f[MAXN];
struct edge
{
    int u,v,w;
    bool operator <(const edge& a)const {return w<a.w;}
}e[MAXN*MAXN];
int find(int x)
{
    return f[x]==x?f[x]:f[x]=find(f[x]);
}
bool Union(int a,int b)
{
    int x=find(a),y=find(b);
    if (x!=y)   {f[x]=y;return 1;}
    return 0;
}
void insert(int u,int v,int w)
{
    e[++top].u=u;e[top].v=v;e[top].w=w;
}
int main()
{
    scanf("%d",&n);f[n+1]=n+1;
    for (int i=1;i<=n;i++)
    {
        f[i]=i;int w;
        for (int j=i;j<=n;j++)  scanf("%d",&w),insert(i,j+1,w);
    }
    sort(e+1,e+top+1);
    for (int i=1;i<=top;i++)
    {
        if (Union(e[i].u,e[i].v))   ans+=e[i].w,sum++;
        if (sum==n) break;
    }
    printf("%lld\n",ans);
}
0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:463867次
    • 积分:9672
    • 等级:
    • 排名:第1828名
    • 原创:451篇
    • 转载:3篇
    • 译文:1篇
    • 评论:160条
    文章分类
    异次元の传送门
    最新评论