【BZOJ4311】向量

原创 2015年11月20日 17:47:36

Description

你要维护一个向量集合,支持以下操作:
1.插入一个向量(x,y)
2.删除插入的第i个向量
3.查询当前集合与(x,y)点积的最大值是多少。如果当前是空集输出0
Input

第一行输入一个整数n,表示操作个数
接下来n行,每行先是一个整数t表示类型,如果t=1,输入向量
(x,y);如果t=2,输入id表示删除第id个向量;否则输入(x,y),查询
与向量(x,y)点积最大值是多少。
保证一个向量只会被删除一次,不会删没有插入过的向量
Output

对于每条t=3的询问,输出一个答案
Sample Input

5

1 3 3

1 1 4

3 3 3

2 1

3 3 3
Sample Output

18

15
HINT

n<=200000 1<=x,y<=10^6

Source

动态维护凸包.答案在凸包上三分.
可以高级数据结构.
还是线段树分治好T_T

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#define MAXN 200010
#define GET (ch>='0'&&ch<='9')
#define LL long long
#define lchild rt<<1,l,mid
#define rchild rt<<1|1,mid+1,r
#define ln rt<<1
#define rn rt<<1|1
using namespace std;
int n,tp1,tp2,top,tp,newtp;
LL ans[MAXN];
void in(int &x)
{
    char ch=getchar();x=0;
    while (!GET)    ch=getchar();
    while (GET) x=x*10+ch-'0',ch=getchar();
}
struct Query
{
    int x,y,l,r;
    friend LL operator *(Query a,Query b)   {return (LL)a.x*b.x+(LL)a.y*b.y;}
    bool operator <(const Query& a)const    {return x==a.x?y>a.y:x<a.x;}
}q1[MAXN],q2[MAXN],newq[MAXN],sta[MAXN];
struct list
{
    Query x;
    list *next;
}e[MAXN*10<<1];
struct seg
{
    int l,r;
    list *prev;
}tree[MAXN<<2];
void build(int rt=1,int l=1,int r=n)
{
    tree[rt].l=l;tree[rt].r=r;
    if (l==r)   return;
    int mid=(l+r)>>1;build(lchild);build(rchild);
}
void insert(int rt,int l,int r,int id)
{
    int L=tree[rt].l,R=tree[rt].r,mid=(L+R)>>1;
    if (l<=L&&r>=R)
    {
        e[++top].x=q1[id];e[top].next=tree[rt].prev;tree[rt].prev=&e[top];
        return;
    }
    if (r<=mid) insert(ln,l,r,id);
    else    if (l>mid)  insert(rn,l,r,id);
    else    insert(ln,l,mid,id),insert(rn,mid+1,r,id);
}
void query(int x)
{
    int l=1,r=tp,len,mid1,mid2;
    while (l<=r)
    {
        len=(r-l)/3;mid1=l+len;mid2=r-len;
        LL dot1=q2[x]*sta[mid1],dot2=q2[x]*sta[mid2];
        if (dot1>dot2)  r=mid2-1,ans[x]=max(ans[x],dot1);
        else    l=mid1+1,ans[x]=max(ans[x],dot2);
    }
}
void solve(int rt,int l,int r)
{
    int mid=(l+r)>>1;
    if (l<r)    {solve(ln,l,mid);solve(rn,mid+1,r);}
    newtp=0;tp=0;
    for (list *i=tree[rt].prev;i;i=i->next) newq[++newtp]=i->x;
    if (!newtp) return;sort(newq+1,newq+newtp+1);sta[++tp]=newq[1];
    for (int i=2;i<=newtp;i++)
        if (newq[i].x!=newq[i-1].x)
        {
            while (tp>1&&(LL)(sta[tp].y-sta[tp-1].y)*(newq[i].x-sta[tp].x)<=(LL)(newq[i].y-sta[tp].y)*(sta[tp].x-sta[tp-1].x))  tp--;
            sta[++tp]=newq[i];
        }
    for (int i=l;i<=r;i++)
        if (q2[i].x)    query(i);
}
int main()
{
    in(n);int opt,x,y;build();
    for (int i=1;i<=n;i++)
    {
        in(opt);
        if (opt==1) in(x),in(y),q1[++tp1].x=x,q1[tp1].y=y,q1[tp1].l=i,q1[tp1].r=n;
        if (opt==2) in(x),q1[x].r=i;
        if (opt==3) in(x),in(y),q2[i].x=x,q2[i].y=y;
    }
    for (int i=1;i<=tp1;i++)    insert(1,q1[i].l,q1[i].r,i);
    solve(1,1,n);
    for (int i=1;i<=n;i++)
        if (q2[i].x)    printf("%lld\n",ans[i]);
}
版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

【bzoj4311】向量 线段树按时间分治+凸包+三分

好像没什么好说的,记录每个点进出的时刻,每个点对应线段树上的O(logn)个节点,然后按时间分治就可以了。 #include #include #include #include #incl...

【线段树分治】[BZOJ4311]向量

题目描述Description你要维护一个向量集合,支持以下操作: 1.插入一个向量(x,y) 2.删除插入的第i个向量 3.查询当前集合与(x,y)点积的最大值是多少。如果当前是空集输出0Input...

【bzoj4311】向量 线段树按时间分治+凸包+三分

好像没什么好说的,记录每个点进出的时刻,每个点对应线段树上的O(logn)个节点,然后按时间分治就可以了。 #include #include #include #include #incl...

bzoj2388【分块+凸包二分】

凸包写挂了调了好久qaq 忘了凸包上的点的横坐标并不是等距的qaq 首先分块,维护前缀和数组,每块维护一个凸包,那么每一块中的答案都在凸包上可以二分求出 对于区间操作,实际上相当于在区间内加一个...

【NOI2013】【BZOJ3243】向量内积

Description两个d 维向量A=[a1,a2,…,ad]与B=[b1,b2,…,bd]的内积为其相对应维度的权值的乘积和,即: 现有 n 个d 维向量x1,…,xn ,小喵喵想知道是否存...

bzoj3533【SDOI2014】向量集

线段树+凸包+三分——OI 520!!!

bzoj 2299 [HAOI2011]向量 裴蜀定理

bzoj 2299 [HAOI2011]向量 裴蜀定理 题意: 给你一对数a,b,你可以任意使用(a,b), (a,-b), (-a,b), (-a,-b), (b,a), (b,-a), (-b,a...
  • whai362
  • whai362
  • 2015年04月22日 19:28
  • 713

BZOJ 3533 Sdoi2014 向量集

题意:在二维平面内,支持一下操作: 1.插入一个向量 2.给定一个向量x,询问第[l,r]次插入的向量中,与x向量叉积的最大值...

Bzoj3533:[Sdoi2014]向量集:线段树+凸包+三分

题目链接[Sdoi2014]向量集 维护一颗线段树,线段树每个节点上有对应区间的上下凸壳 可以发现答案一定在凸壳上取得,所以在凸壳上三分即可,y>=0时在上凸壳上三分,否则在下凸壳 #inclu...

BZOJ3533 SDOI2014 向量集

SDOI2014 向量集Time Limit: 25 Sec Memory Limit: 512 MB 维护一个向量集合,在线支持以下操作: “A x y (|x|,|y| < =10^8)”:...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:【BZOJ4311】向量
举报原因:
原因补充:

(最多只允许输入30个字)