关闭

poj 3083 Children of the Candy Corn (DFS+BFS)

标签: pojdfsbfs
490人阅读 评论(0) 收藏 举报
分类:

Children of the Candy Corn
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 10881   Accepted: 4678

Description

The cornfield maze is a popular Halloween treat. Visitors are shown the entrance and must wander through the maze facing zombies, chainsaw-wielding psychopaths, hippies, and other terrors on their quest to find the exit. 

One popular maze-walking strategy guarantees that the visitor will eventually find the exit. Simply choose either the right or left wall, and follow it. Of course, there's no guarantee which strategy (left or right) will be better, and the path taken is seldom the most efficient. (It also doesn't work on mazes with exits that are not on the edge; those types of mazes are not represented in this problem.) 

As the proprieter of a cornfield that is about to be converted into a maze, you'd like to have a computer program that can determine the left and right-hand paths along with the shortest path so that you can figure out which layout has the best chance of confounding visitors.

Input

Input to this problem will begin with a line containing a single integer n indicating the number of mazes. Each maze will consist of one line with a width, w, and height, h (3 <= w, h <= 40), followed by h lines of w characters each that represent the maze layout. Walls are represented by hash marks ('#'), empty space by periods ('.'), the start by an 'S' and the exit by an 'E'. 

Exactly one 'S' and one 'E' will be present in the maze, and they will always be located along one of the maze edges and never in a corner. The maze will be fully enclosed by walls ('#'), with the only openings being the 'S' and 'E'. The 'S' and 'E' will also be separated by at least one wall ('#'). 

You may assume that the maze exit is always reachable from the start point.

Output

For each maze in the input, output on a single line the number of (not necessarily unique) squares that a person would visit (including the 'S' and 'E') for (in order) the left, right, and shortest paths, separated by a single space each. Movement from one square to another is only allowed in the horizontal or vertical direction; movement along the diagonals is not allowed.

Sample Input

2
8 8
########
#......#
#.####.#
#.####.#
#.####.#
#.####.#
#...#..#
#S#E####
9 5
#########
#.#.#.#.#
S.......E
#.#.#.#.#
#########

Sample Output

37 5 5
17 17 9

Source


题目链接:一个迷宫,S为起点,E为终点。

  三种方法从S到E:1.从前进方向的左侧开始顺时针寻找下一个可行点;

2.从前进方向的右侧开始逆时针寻找下一个可行点;

3.找最短路径;

  求分别通过这三种方法走过的格子数。


解题思路:前两种方法用DFS,四个方向,若是方法一,下一个点不可行时,顺时针判断下一个点,可行时,逆时针回到上一个方向。即nextdex=(dex+1)%4和nextdex=(dex+3)%4,方法二直接两个式子位置互换。找最短路显然用BFS,要注意visit数组的标记!!当时忘了TLE了好久。


代码如下:

#include <cstdio>
#include <queue>
#include <cstring>
using namespace std;
int dx[4]={-1,0,1,0};
int dy[4]={0,-1,0,1};
char a[42][42];
int vis[42][42];
int n,m,cnt;
bool p;
struct node   //每个格子的信息,num是起点到当前格子的步数
{
	int x,y,num;
};
void dfsl(int x,int y,int i)   //左转优先
{
	if(p||a[x][y]=='E')
	{
		p=true;
		return ;
	}
	int cx=x+dx[i];
	int cy=y+dy[i];
	while(cx<0||cx>=n||cy<0||cy>=m||a[cx][cy]=='#')//下一个点不可行
	{
		i=(i+3)%4;                //顺时针转判断下一个点
		cx=x+dx[i];
		cy=y+dy[i];
	}
	cnt++;
	dfsl(cx,cy,(i+1)%4);      //下一个点可行,方向逆时针回到上一个方向
}
void dfsr(int x,int y,int i)  //右转优先,和左转优先正好相反
{
	if(p||a[x][y]=='E')
	{
		p=true;
		return ;
	}
	int cx=x+dx[i];
	int cy=y+dy[i];
	while(cx<0||cx>=n||cy<0||cy>=m||a[cx][cy]=='#')
	{
		i=(i+1)%4;
		cx=x+dx[i];
		cy=y+dy[i];
	}
	cnt++;
	dfsr(cx,cy,(i+3)%4);
}
int bfs(int sx,int sy)  //找最短路径
{
	queue<node>q;
	node sd;
	sd.x=sx;
	sd.y=sy;
	sd.num=1;
	q.push(sd);
	vis[sx][sy]=1;       //起点也要标记
	while(!q.empty())
	{
		node no=q.front();
		q.pop();
		for(int i=0;i<4;i++)//每个方向都要判断
		{
			int cx=no.x+dx[i];
			int cy=no.y+dy[i];
			if(vis[cx][cy]||cx<0||cx>=n||cy<0||cy>=m||a[cx][cy]=='#')
				continue;       //下一个点不可行,换一个方向
			sd.x=cx;            //下一个点可行,步数加以后加入队列
			sd.y=cy;
			sd.num=no.num+1;
			vis[cx][cy]=1;
			if(a[cx][cy]=='E')
				return sd.num;
			q.push(sd);
		}
	}
}
int main()
{
	int t,sx,sy;
	scanf("%d",&t);
	while(t--)
	{
		memset(vis,0,sizeof(vis));
		scanf("%d%d",&m,&n);
		for(int i=0;i<n;i++)
		{
			scanf("%s",&a[i]);
			for(int j=0;j<m;j++)
			{
				if(a[i][j]=='S')
				{
					sx=i;
					sy=j;
				}
			}
		}
		cnt=1,p=false;
		dfsl(sx,sy,0);
		printf("%d ",cnt);
		cnt=1,p=false;
		dfsr(sx,sy,0);
		printf("%d ",cnt);
		printf("%d\n",bfs(sx,sy));
	}
	return 0;
}



0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:49097次
    • 积分:1989
    • 等级:
    • 排名:第19640名
    • 原创:160篇
    • 转载:0篇
    • 译文:0篇
    • 评论:4条